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The paper presents new results concerning the influence of nickel addition (1 and 5 at.%) into tin on the
development of the Cu/(Sn,Ni) interface area in diffusion couple experiment. The morphology and
chemical composition of the intermetallic phases growing in the Cu/(Sn,Ni) diffusion couples were
examined by means of the scanning (SEM) and transmission (TEM) electron microscopy after annealing
at 215 °C in vacuum for different period time.

It was shown that even 1 at.% of nickel addition into tin resulted in formation of intermetallics of
complex microstructure. The presence of (Cuj_xNix)sSns in two morphological and compositional vari-
ants was noted. The discontinuous layer consisting up to 7.2 at.% of Ni closer to copper end-member
coexisted with needle-like and faceted precipitates with even 22.3 at.% of Ni, which intensively de-
tached from the interface. At the Cu/(Cu;_xNiy)gSns interface the formation of Cu3Sn wavy layer com-
pound was observed in all examined diffusion couples which became thicker with time. The porosity
within the both formed intermetallic phases existed irrespective of the amount of added nickel.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Soldering of modern materials is one of the main streams of the
environment friendly technologies, which are nowadays inten-
sively developed. The lead containing solders (Sn—Pb eutectic al-
loys), although widely used due to their good mechanical
properties and low manufacturing cost, must be abandoned in the
electronic industry [1]. The toxic effect of Pb on human health and
the environment can no longer be ignored. Nowadays, it is partic-
ularly important to find environment friendly, non-toxic sub-
stitutes for the Pb high content solder materials in electronics [2].

At the present, the Sn based alloys with different ratio of Cu, Ag
as additions, are the most common lead-free solders applied for
copper soldering of electronic items. On the other hand, one of the
surface plating used for printed circuit boards is electroless nick-
el-immersion gold (ENIG) and electroless nickel—electroless pal-
ladium—immersion gold (ENEPIG) [3]. There are also reports (for
example [4]) describing the addition of nickel to lead-free solder
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such as SAC (SnAgCu) alloy only from the technological point of
view. These experiments showed that very small addition of Ni as
0.01wt.% resulted in effective growth retardation of CusSn phase.
Similar effect was caused by introducing of 0.05 wt.% Ni into
Sn0.7Cu solder [5]. Such behavior was attributed to the accelerating
interdiffusion through CugSns and CusSn. On the other hand, the
addition of 0.02—0.1 wt.% of Ni into Sn0.7Cu solder reacting with
the Ni substrate, led to the morphology change of CugSns (from
cylindrical to faced) and its faster growth [6].

The other aspect of the Pb-free soldering is to find new methods
that could fulfill more and more restrictive working conditions. The
promising joining technology to be applied in the industry seems to
be the diffusion soldering [7—11]. The goal of diffusion soldering is
to obtain the joint fully filled by the intermetallic phase as in such a
way the interconnection has a high thermal stability, reflecting the
properties of the created intermetallic compound. In the existing
literature data the diffusion soldering process took the significant
time from minutes [12—14], hours [15] up to days [14,16] of inter-
action at high temperature. In particular the Cu/Sn/Cu diffusion
soldered interconnection is important to recall to be later compared
with presented results. Bader et al. [17] applied very thin (5.2 pm)
tin layer sputter deposited on the copper substrate and annealed at
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240 °C for 20 min to obtain the joint totally filled by two in-
termetallics CugSns and CusSn. With respect to this thickness such
time of soldering is relatively long. In typical technological condi-
tions such long soldering time is unrealistic, therefore the research
is also focused on finding such additives to lead-free solders already
applied, which will cause changes in the mechanism of phase
transformations and in turn accelerate the formation and growth of
the intermetallic phases.

Our previous study connected with the diffusion soldered in-
terconnections demonstrated that small Ni addition (5 at.%) to the
copper substrate changes not only the morphology but also the
sequence of intermetallic compounds growing in the reaction zone.
The microstructure and chemical composition analyses revealed
only the formation of (Cu,Ni)sSns phase, while no e-CusSn was
detected [10,11].

Similar behavior was also observed in the (Cu,Ni)/Sn diffusion
couples. In the presence of 1 at.% Ni still (Cuy_xNix)sSns and CuzSn
phases appeared but the reaction run faster compared to the clas-
sical Cu/Sn couples. Further addition of Ni (about 5 at.%) to copper
led to the situation, that only growth of the (Cu,Ni)gSns phase was
observed [18,19].

The presented above examples are related for Ni addition to Cu
substrate. Literature data provides the information concerning the
Ni additions to SAC solder [20], SnAg [21] or reactions in Ni/SAC/Cu
interconnections [22], where the different morphology of the
(Cu,Ni)gSns was reported. The present experiment is innovative in
the light of the applied larger amounts of nickel additive (1 and
5 at.%) in comparison to the reported literature [20—22], where the
Ni was up to 1 wt.% (usually 0.1 at.%). Moreover, solely the diffusion
processes in the solid state are involved in the experiment. The goal
of our study was characterization of microstructure and chemical
composition of the phases which form and grow in the in the Cu/
(Sn,Ni) diffusion couples (with 1 and 5 at.% of Ni).

2. Experimental

The Sn—Ni alloys for (Sn,Ni) pads were prepared by melting
appropriate amounts of pure Sn (Alfa Aesar, 99.998%) and Ni (Alfa
Aesar, 99.99%) in vacuum induction furnace (Leybold—Heraeus)
under argon protective atmosphere (0.03 MPa) at the temperature
100 °C above liquidus, then cast into the steel mold to obtain ingots
with the height of 90 mm and 15 mm of diameter. The same
method was also applied for obtaining the pure Cu (Alfa Aesar,
99.99%) ingots with the similar shape. Next, the cast alloys were cut
into slices with a thickness of 3 mm and then into quarters followed
by grinding using a paper with a maximum gradation of 2000.
Before the annealing, all the substrates were cleaned with acetone
in an ultrasonic washer. Subsequently, the pieces of Cu and Sn—Ni
alloys with 1 at.% and 5 at.% of Ni were pressed together and
clenched in the specially prepared handle. The holder with the
samples was placed in the quartz ampoule sealed under the vac-
uum and then placed in the muffle furnace heated up to the tem-
perature of 215 °C (488 K) and annealed for different times: 48, 120,
168 and 225 h.

The cross-sections of the diffusion couples were prepared to
characterize the morphology and chemistry of the intermetallic
compounds growing in the reaction zone between Cu and (Sn,Ni)
substrates.

The detailed studies of the formed intermetallic phases, their
morphology and chemical composition were investigated using
scanning electron microscopes: JEOLJSM 5510 LV equipped with an
energy dispersive X-ray spectrometer (EDS), IXRF Model 500 as
well as FEI Quanta 3D FEGSEM integrated with the EDAX Trident
system.

The selected areas at the interfaces between the different phases
formed in the examined diffusion couples, were cut out using a
Quanta 3D Focused Ion Beam (FIB) to prepare the thin foils for the
transmission electron microscopy (TEM) observations. The TEM
investigations were performed using a TECNAI G2 FEG super TWIN
(200 kV) microscope equipped with a high angle annular dark field
detector and integrated with EDS system (Phoenix type) manu-
factured by EDAX.

Calculations of the binary equilibrium phase diagrams were
accomplished based on the literature data [23]| and with applica-
tion of Pandat version 7.0.

3. Results

The SEM microstructure observations and the EDS analysis of
the Cu/(Sn,Ni) diffusion couples with the 1 and 5 at.% of Ni addition,
after annealing at 215 °C for 48, 120, 168 and 225 h in vacuum
revealed the presence of three intermetallic compounds (IMCs)
which were located in the following order: Cu pad/CusSn/(Cuq_y.
Niy)gSns/(Nij_xCuy)3Sng/(Sn,Ni) pad. The Ni3Snyg phase was present
in the (Sn,Ni) pad before the diffusion couples experiment in the
form of single precipitates distributed in the shape of characteristic
lines (Fig. 1a and b). Appearance of the phase results directly from
the Sn—Ni binary phase diagram (Fig. 1c). Both of the selected
compositions of the tin based substrates are located in the two-
phase region: (Sn) + Ni3Sns. However, in the case of 1 at.% of Ni
addition the amount of this phase was negligible (Fig. 1a). It is
worth noting that after 48 h of annealing the (Ni;_,Cuy)3Sng was
located at the distance of about 400 pm away from Cu/(Sn,Ni) re-
action zone (Fig. 2a). After longer annealing time this phase was
placed beyond the area of the diffusion couple shown in Fig. 2b—d.
The estimated distance of (Nij_xCuy)3Sng increased from 500 um
after 120 h to 800 pum after 225 h. Moreover, the chemical
composition analysis revealed the diffusion of Cu far from the Cu/
(Sn,Ni) interface and into the (Sn,Ni) pads because the grains of
(Nij_xCuy)3Sng phase contained about 3 at.% of Cu far from the
reaction zone and about 6 at% closer to the center of diffusion
couple (see Table 1). For the Sn + 5 at.% Ni composition of starting
component more Ni3Sng phase was present and even after
annealing the (Ni;_,Cuy)3Sng phase appeared in the form of small
precipitates homogeneously distributed in the whole substrate
(Fig. 3). The copper concentration in this phase changed from 2 at.%
to 7 at.% when approaching to the reaction zone (Table 1).

Observation of the interface morphology of the diffusion cou-
ples revealed the formation of two new intermetallic phases. The
use of EDS/SEM and TEM experiments allowed to identify them as
(Cuq_xNiy)sSns and CusSn phases.

The (Cuj_4Nix)eSns phase was characterized by dual
morphology. Close to the (Sn,Ni) pad grains of various shapes such
as needle-type and faced one surrounded by the pure tin were
formed while next to CusSn phase, the discontinuous layer of
(Cuq_xNix)sSns was present (Figs. 2 and 3).

The results of the EDS/SEM quantitative analysis of the phases
within the investigated diffusion couples are collected in Table 1.
The places of chemical point analyses were marked in Figs. 4 and 5
with numbers 1—10 and each of them represents the average values
from several analyses.

This study showed the significant differences in the chemical
composition within the (Cu;_xNix)sSns phase dependent on its
localization and morphology. In the case of the Cu/(Sn + 1 at.% Ni)
diffusion couples the Ni concentration in the layer close to the
CusSn phase reached 3—7 at.%, while in the large grains was much
larger approaching 17—20 at.%. For the Cu/(Sn + 5 at.%Ni) diffusion
couples these values were mostly the same. In the case of the grains
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Fig. 1. (a and b) SEM micrographs of the (Sn,Ni) pads; (c) binary Ni—Sn phase diagram calculated based on data published in Ref. [23] with marked: annealing temperature —

horizontal dashed line and compositions of the tin base pads — vertical dashed lines.

of the (Cuq_xNiy)sSns phase the nickel content was at the level of
22 at.% while in the layer it was found to be 4 at.%.

The SEM line scans analysis preformed for the samples annealed
at 215 °C for 168 h (Fig. 6) clearly confirmed the variable nickel
content in the (Cuy_xNiy)sSns phase. The obtained results showed
also, that in the case of Cu3Sn no Ni concentration was detected
(Figs. 6 and 7) which corresponded to the point analysis of the
chemical composition of the intermetallic phases (Table 1).

{Ni1.xCuy)3Sn,
grains in the Sn
matrix

Ni-rich variant
(Cu1.xN ix)ssns

Ni-rich variant
Ni-poor variant

~ (CuyNiy)eSns Ni-rich variant

Ni-poor variant

CusSn

The transmission electron microscopy was applied in order to
confirm identification of both intermetallics. Fig. 8a presents the
localization of the thin foil (Fig. 8b) which was prepared using FIB
method from Cu/(Sn + 5 at.%Ni) couple annealed at 215 °C for 48 h.
Such methodology allowed to observe the Sn matrix (Fig. 8c) and all
the phases existing across the Cu/(Sn,Ni) interface area namely:
(Cuy_xNiy)sSns (Fig. 8d) and CusSn (Fig. 8e). Bright field image of
the (Cuj_xNiyx)gSns phase (Fig. 8d) revealed the presence of many

Ni-rich variant

(CU1.xNix)sSn5
Ni-poor variant

I CusSn

g Cu 100um

Ni-rich variant

(c u1-xN ix)ssns

Ni-poor variant

‘ CusSn

Fig. 2. SEM micrographs of the Cu/(Sn + 1 at.% Ni) diffusion couples annealed in vacuum at 215 °C for: (a) 48 h, (b) 120 h, (c) 168 h and (d) 225 h.
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Table 1
The average values of the EDS/SEM quantitative analysis performed at points indicated in Figs. 4 and 5 in the Cu/(Sn + 1 at.% Ni) and Cu/(Sn + 5 at.% Ni) annealed at 215 °C for
168 h.
Point no. Element content, at.% Phase
Cu/(Sn + 1 at.% Ni) Cu/(Sn + 5 at.% Ni)
Cu Ni Sn Cu Ni Sn
1 3.1+04 394+ 038 575+1.2 24 +0.2 403 + 0.8 573 + 1.1 (Niq_xCuy)3Sny
2 6.1+1.0 336+ 1.3 60.3 + 1.2 71+14 33.1+13 59.8 + 1.2 (Niq_xCuy)3Sn4
3 334 +0.7 20.7 + 0.8 459 + 0.9 314 + 06 223 +09 46.3 + 0.9 (Cuq_xNiy)sSns, Ni-rich variant
4 34.7 + 0.7 194 + 0.8 459 + 0.9 31.7 £+ 0.6 22.1+09 46.2 + 0.9 (Cuy_xNiy)eSns, Ni-rich variant
5 36.8 +0.7 175+ 0.8 457 + 09 321+06 216 +0.9 463 + 0.9 (Cuy_4Niy)eSns, Ni-rich variant
6 1.1 +0.2 03 +0.2 98.6 + 2.0 1.2+02 0.5+ 0.3 983 +2.0 (Sn)
7 46.6 + 0.9 72+03 46.2 + 0.9 493 + 1.0 4.0 +0.5 46.7 + 0.9 (Cuq_xNiy)sSns, Ni-poor variant
8 504 + 1.0 34+04 46.2 + 09 493 + 1.0 38+05 46.9 + 0.9 (Cu_Niy)sSns, Ni-poor variant
9 745 + 1.5 0.2 +0.1 253 +£0.5 747 £ 1.5 0.0 253+ 05 CusSn
10 99.6 + 2.0 0.2 +0.1 0.2 +0.1 99.5 + 2.0 0.3 +0.2 0.2 +0.1 Cu
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Fig. 4. SEM micrographs of the diffusion couple Cu/(Sn + 1 at.% Ni) annealed in vacuum at 215 °C for 168 h with marked points of SEM/EDS analysis, numbers 1—10: (a) overall view,

(b) enlarged area marked as a white rectangle in a.
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Fig. 5. SEM micrographs of the diffusion couple Cu/(Sn + 5 at.% Ni) annealed in vacuum at 215 °C for 168 h with marked points of SEM/EDS analysis, numbers 1-10: (a) overall view,

(b and c) enlarged areas marked as a white rectangles in a.

Ni-poor variant

(CU1.XN ix)68n5

00
Position, ym

Fig. 6. SEM micrograph of the Cu/(Sn-1 at.% Ni) diffusion couple annealed in vacuum at 215 °C for 168 h (a), with corresponding EDS line scans (b). Numbers 1—6 denote particular

areas of microanalysis relevant to results shown in b.

dislocations. The grains growing faster than in the classical Cu/Sn
couple are exposed to stress. On the other hand, the grains of CuszSn
are free of the dislocations and posses round regular shapes
(Fig. 8e). The selected area electron diffraction patterns unambig-
uously confirmed the presence of both (Cu;_xNix)sSng and CusSn
phases (Fig. 8d and e).

4. Discussion
4.1. (Cuj_xNix)eSns phase

Independently of the nickel amount added to the (Sn,Ni) pad, in
all the investigated samples (Cuj_xNix)eSns phase growth was
detected. Similar observation was made by Tsai et al. [20] con-
cerning interaction between Cu and Sn3.5Ag solder doped with 0.1,
0.5 or 1 wt. % of Ni. In comparison to the growth of the classical
CueSns phase several differences were indicated in the (Cuj_y.
Niy)eSns. First of all, the dual morphology of this phase was

observed accompanied by the spalling of the rich-Ni (Cuj_xNiy)sSns
phase variant. It can be only speculated in here, that the reason of
the massive intermetallic spalling in the solid state can be attrib-
uted to the mechanical stresses caused by the different growth rate
of IMCs.

As it was previously reported in the literature [24—26] duplex
grain morphology can occur inside the intermetallic compound,
where two sublayers of different shape, size or orientation of the
grains can be observed. Such dual morphology is the clear evidence
for Kirkendall effect within the diffusion couple [27]. It should be
pointed out that in many cases, it is rather difficult to locate the
position of the marker plane from the position of the voids. In such
case, the grain morphology difference can provide clear indications
about the marker plane.

Yoon et al. [28] observed various CugSns morphologies under
different experimental conditions — temperature, time and cooling;
either needle-like, polyhedron-, or dodecahedron-type in-
termetallics were present. Although the nickel amount in the
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Fig. 7. Micrograph of the Cu/(Sn-5 at.% Ni) diffusion couple annealed in vacuum at 215 °C for 168 h (a), with corresponding EDS line scans (b). Numbers 1-9 denote particular areas

of microanalysis relevant to results shown in b.

Area selected for
FIB prepatation

Fig. 8. SEM/FIB micrograph of the Cu/(Sn + 5 at.% Ni) diffusion couples annealed in vacuum at 215 °C for 48 h: SEM/FIB overall view of the diffusion couple (a), the final thin foil (b)
where the places of further study was marked with letters c—e. TEM bright field images (c—e) together with corresponding selected area electron diffractions.

intermetallic phase changed significantly from about 12 to 20 at.%,
the morphology change was not prescribed to it but to different
experimental conditions (temperature, cooling speed). Two vari-
ants of the same intermetallics were observed also in Ni/Al/Ni in-
terconnections but they did not differ morphologically between
themselves [12].

Vourinen et al. [ 19] stated, based on the EDS measurements, that
the Ni content of the (Cu,Ni)sSns phase was close to that of the
original Cu(Ni) alloy. For example when 1 at.% of Ni was added to
Cu, the Ni content of (Cu,Ni)gSns was about 1 at.%. No list of EDS
data was presented in their paper, however, even this short

comment points large discrepancies between our and their results.
Similar results like Vourinen et al. [19] were obtained in our pre-
vious research concerning the nickel additions to copper (5 at.% of
Ni) [12] where the (Cuj_xNix)sSns phase contained 3.5—4.5 at.% Ni.

Ho et al. [29] observed dual morphology and composition of
(Cu,Ni)sSns in the reaction between SAC305 and Au/Pd(P)/Ni(P)
surface finish on Cu. High and low nickel content phases (not
specified the element amounts) possessed similar morphology as in
our case. The Authors [29] also claimed that high Ni-containing
(Cu,Ni)sSns grew in the early stage of the soldering process and
the low Ni type after longer times of interaction between solder
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alloy and pads. Moreover, lower nickel (Cu,Ni)sSns variant formed
dense layer with some tin amount trapped within it, which was
also observed in particular places in our study (compare Figs. 4b, 6a
and 7a). Ho et al. [29] prescribed the dual morphology of
(Cu,Ni)gSns phase to different reaction systems claiming that the
higher Ni containing variant resulted from the solder/Ni(P) reac-
tion, while the lower one from the solder/Cu reaction. However, in
the present study similar morphology is created although the
(Sn,Ni) pad with only 1-5 at.% of Ni served as the nickel source. Liu
et al. [22] showed such dual morphology as well, providing also the
composition data being relevant to our experimental data. Tsai et al.
[20] reported similar microstructure as previous cited researchers
commenting that the low Ni variant was formed in the liquid state,
while the higher containing nickel variant was formed during the
solidification of the molten solder. Nevertheless, it should be
stressed that in all above mentioned papers [20,22,29] liquid—solid
interaction took place in comparison to this work.

In the present study at the interface of two sublayers the voids
were clearly distinguished across the line within (Cu;_x,Ni)gSns
phase (Figs. 2 and 3), being the manifestation of the Kirkendall
effect (Kirkendall plane). These voids are formed in the case of the
large difference in mobility of the species, because not enough sites
are available to consume the vacancies that go in the opposite di-
rection to the faster diffusing species. For example, in the classical
Cu/Sn diffusion couple experiment it was estimated that copper is
32 times faster than Sn through the CusSn phase [30].

Tsai reported that the voids within the (Cuj_xNi)gSns phase
were formed during the reflow in the liquid state, while the part of
the phase formed during solid state aging was free of voids [20].
However, these voids were of different nature as they are the areas
where the liquid solder was trapped. Nevertheless, Ho et al. [29]
evidenced the nanovoids between (Cu,Ni)sSns (high Ni) and
(Cu,Ni)gSns (low Ni), demonstrating their contribution to the
reduction in the joint.

The present study also allows to compare the Cu/(Sn,Ni) (1 and
5 at.% Ni) microstructure with classical Cu/Sn diffusion couple one
revealing that the increase of the Ni content in the Sn caused that
much more rapid growth of (Cuj_xNiy)sSns phase within the re-
action zone (Figs. 2 and 3). As it was presented previously in Ref.
[11] the nickel addition to the copper resulted in much faster
growth of the (Cuj_xNiy)eSns phase and was attributed to the
substantial contribution of grain boundary diffusion during the
joining process. Moreover, Tsai et al. also reported that during the
interaction between Cu and Sn3.5Ag solder doped with Ni, the ki-
netics of the (Cu;_xNiy)gSns phase formation became much faster
with increasing the Ni addition [20].

The selected area electron diffraction patterns in TEM confirmed
the presence of the (Cuj_xNix)eSns phase (Fig. 8d). What is more,
the measured distances gave a good agreement with the lattice
parameters of the CugSns phase. Therefore, it can be concluded that
the nickel atoms substitution to the copper ones does not change
the crystallographic structure of this phase. The similar observation
was presented by Tsai et al. [20], who noted that Ni addition to the
Sn—Ag solder caused only the changes in the chemical composition
of the CugSns phase and not in its crystal structure.

4.2. CusSn phase

From the SEM and TEM microstructure and chemical composi-
tion characterization results presented in this study, it was found
that the CusSn phase was also formed in all examined samples.

The CusSn intermetallic phase was formed as the wavy contin-
uous layer near to the Cu pad (Figs. 2 and 3). The shape of this
intermetallic compound was close to that observed in the classical
Cu/Sn system as well as in the (Cu + 1 at.%Ni)/Sn [18,19].

Moreover, the EDS/SEM quantitative analysis (Table 1) revealed
that no Ni was present in the CusSn even for the higher content of
the nickel in the Sn pad (5 at.%) and long time of annealing (168 h).
The same situation was discussed by Tsai et al. [20], who observed
the CusSn phase formation between Cu and CugSns phase after
solid-state aging of the Cu and Sn3.5Ag solder with Ni addition at
150 °C for 1000 h.

Furthermore, many voids, along this phase appeared after long
time of annealing (168 h and longer) — see magnified box in Fig. 2d.
The CusSn phase porosity was previously reported by Paul et al.
[18], in Cu-1 at.% Ni/Sn couples. According to their calculations in
Cu/Sn couple no stable Kirkendall plane formed inside the CusSn
phase. It was explained by the fact that the purity of the diffusion
couple end members is the factor that may influence the diffusion
fluxes and therefore to initiate the creation of Kirkendall plane
inside CusSn. As this is not a case here (high purity of the end
members) the voids in both (Cu,Ni)sSns and CusSn were placed
along the line (Kirkendall plane).

Contrary to (Cuj_xNiyx)gSns phase growth, the observed changes
in amount of the CusSn were not so significant with increasing
nickel concentration in tin (Figs. 2 and 3). It is worth noting that the
largest difference in the thickness of the CuszSn phase from about
2 pm to 10 pm was observed between the couples annealed for 48
and 120 h. Further prolongation of the experiment did not result in
so significant changes.

Studies on Cu/Sn diffusion couples performed by Tu and
Thompson [31—33] demonstrated that below 50 °C only the stable
CueSns phase nucleated and no CusSn phase was evidenced. Above
this temperature formation of both phases was observed. Further-
more, it was showed that the formation of CusSn [30] in Cu/CugSns
diffusion couples in the temperature range from 115 to 150 °C takes
place at least partly at the expense of CugSns and its absence in the
samples is correlated with the nucleation problems. It was stated
that the phases with high fluxes of diffusing species are favored and
can suppress the growth of other phases.

At low temperatures noble and near-noble metals (Cu) can
diffuse interstitially in-group IV elements, such as Sn, and also the
grain boundary diffusion takes place [34]. Contrary to this the
vacancy-mediated volume diffusion predominates at higher tem-
peratures. At temperatures above 100 °C tin is the fastest diffusing
element in CugSns while the copper in CusSn [19]. Yu et al. [35]
suggested the increase of the driving force for the diffusion of Sn
through CugSns with increasing nickel content in the phase.

4.3. Diffusion path

The chemical composition changes collected in Table 1 across
the diffusion couple allowed to draw the diffusion path on the
isothermal section of the equilibrium phase diagram calculated in
Ref. [36] for 220 °C (dotted line in Fig. 9a). Fig. 9b shows the
schematic representation of the microstructure drawn based on its
course and the rules given by Clark [37]. As the chemical compo-
sition of phases formed in the both investigated diffusion couples
differed slightly, only the diffusion path for the Cu/(Sn + 5 at.% Ni)
couple was presented.

The diffusion path starts in the (Sn) + Ni3Sng two phase field
(one of the end members used in the diffusion couple), then crosses
the Ni3Sny phase field and again goes back through the two-phase
field (Sn) + Ni3Sngs. The representation of such course are the
(Nij_xCuy)3Sn4 phase precipitates within the (Sn) matrix. Next the
path runs through the three phase field (Sn) + Ni3Sng + CugSns — in
the tin matrix the (Ni;_,Cuy)3Sng (Cuq_xNiy)sSns precipitates are
present. Then it enters to the two-phase field (Sn) + CugSns (in the
tin matrix the (Cu;_xNiyx)gSns phase precipitates) and afterward to
the Ni-rich (Cu,Ni)sSns phase field. After that the path goes back to
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the two-phase field (Sn) + CugSns — in the microstructure the tin is
trapped within the (Cuj_xNix)sSns phase. Subsequently the path
crosses the Ni-poor (Cu,Ni)sSns phase field, which appears as a
continuous layer. At the end CusSn phase field is crossed by the
diffusion path, finishing in Cu end member, which can be seen as
layer of Cu3Sn between the (Cu;_xNiy)gSns and Cu. Schematic dia-
gram of microstructure (Fig. 9b) gives a good agreement with SEM
observations (Figs. 2—7).

The contradictory results were obtained by Vourinen [19],
where the diffusion path did not passed across the stability region
of CusSn phase and so it was not observed in their samples.

The lack of CusSn phase was also observed by Tu et al. [31] in
their experiment and it was ascribed to the problems with nucle-
ation. In the light of our previous study [10] concerning diffusion
soldered interconnections ((Cu-5 at.%Ni)/Sn/(Cu-5 at.%Ni)) this
statement holds, as the barrier of nickel concentrated at the Cu(Ni)/
(Cuq_xNiy)eSns was detected, and no CusSn phase was present. On
the other hand, presented here TEM studies of the Cu/(Sn + 5 at.%
Ni) diffusion couples did not reveal the presence of nickel barrier,
and so the Cu3Sn was created.

5. Conclusions

The presented diffusion couple experiment together with the
microstructure and phase composition data contribute to the
knowledge in the field of phase transformations in ternary
Cu—Ni—Sn system [38—42], considered as one of the most impor-
tant in the soldering.

The scanning and transmission electron microscopy examina-
tion on Cu/(Sn,Ni) diffusion couples with the 1 and 5 at.% of Ni
addition prepared at 215 °C in vacuum for various time (48, 120, 168
and 225 h) allowed to detect three intermetallic compounds:
(Cuq_xNiy)sSns and CusSn and (Nij_xCuy)3Sng. The (Cuj_xNiy)sSns
evidenced strong manifestation of Kirkendall effect by its dual
morphology. This phase took the form of either the discontinuous
layer closer to the copper side or various shaped precipitates
(needles or faced) from the tin—nickel side. These precipitates de-
tached from the interface and were localized even up to 100 pm

from it. Such differences in microstructure were accompanied by
the chemical composition fluctuations, which varied from 3.4 to
7.2 at.% of Ni in the layer and from 17.5 to 22.3 at.% of Ni in pre-
cipitates. The growth of the (Cuj_4Niy)sSns phase in Cu/(Sn,Ni)
couple was faster than CugSns in Cu/Sn. However, its growth was
slower than in the case of (Cu,Ni)/Sn couple. On the other hand, the
Cu3Sn phase forming wavy layer at the Cu/(Cu;_xNiy)gSns appeared
in the diffusion couples even for larger amounts (5 at.%) of nickel
added into tin before the experiment which was not previously
reported.
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