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The potential, electric field and surface charges for a resistive long straight
strip carrying a steady current
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We consider a long resistive straight strip carrying a constant current and calculate the potential and
electric field everywhere in space and the density of surface charges along the strip. We compare
these calculations with experimental results.2@3 American Association of Physics Teachers.
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|. THE PROBLEM z=2, (20

Recently there has been renewed interest in the electric I T 5oy
field outside stationary resistive conductors carrying a con‘—’VhereQ_,‘/(X +tys+a’) —4axt. o
stant current=” We consider a case that has not been treated L@place’s equation in this coordinate system is given by

in the literature, namely, a constant current flowing uni-

formly over the surface of a stationary and resistive straight V24— 1 R AN —0
strip. Our goal is to calculate the potential and electric ¢= a%(cosH 7—cog ¢) (9_772+ ag?] 92 T
field E everywhere in space and the surface charge distribu- (3

tion o along the strip that creates this electric field.
We consider a strip in thg=0 plane localized in the A solution of Eq.(3) can be obtained by using separation of

region —a<x<a and —{<z<¢, such thatt>a>0. The variables in the formp(n,¢,2)=H(7)P(¢)Z(2):
medium around the strip is taken to be air or vacuum. The

constant currerit flows uniformly along the positive direc- H” — (ap+ asa®cosif »)H=0, (43
tion with a surface current density given by=12/2a (see
Fig. 1). By Ohm’s law this uniform current distribution is D"+ (ap+ aza? cof @) D=0 (4b)

related to a spatially constant electric field on the surface of
the strip. In the steady state this electric field can be related
to the potential bye= —V ¢. This relation means that along
the strip the potential is a linear function ofand indepen-
dent of x. The problem can then be solved by finding the
solution of Laplace’s equatioR?¢=0 in empty space and
applying the boundary conditions.

7"+ a3Z=0, (40)

wherea, and a5 are constants.

For a long strip being considered here, it is possible to
neglect boundary effects near *=¢. It has already been
proved that in this case the potential must be a linear func-
tion of z, not only over the strip, but also over all spdce.
[I. THE SOLUTION This condition means that;=0. There are then two pos-
sible solutions for®(¢). If a,=0, then®=C,+C,o; if
a,#0, thend = C sinya,¢+ C, cosa,e, whereC, to C,
are constants. Along the strip we haye=0, andx?<a?,
which  means that Q=a’-x?, =0, and ¢
=tan %/(a?—x?)/x%. Because the potential does not depend
onx along the strip, this independence means that the poten-
x=acoshz cose, (18 tjal will not depend ong as well. Thus a nontrivial solution
for ® can only exist ifa,=0, C,=0, and® = constant for
all ¢. The solution forH with a,=a3=0 will be then a
z=z, (10 linear function of#. The general solution of the problem is

wherea is the constant semi-thickness of the strip. The in-t€n given by
verse relations are given by
x2—y?—a’+ 0

., [Xfmyt—at+Q
p=tanh 1/ —————, (28
2X A, tanh 't 2 —A,|(Asz—A,). (5)
a’—x>+y?*+Q
p=tan 1\/———5—, (2b) L . )
2X The electric fieldE= —V ¢ takes the following form:
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Due to the symmetry of the problem, it is convenient to
use elliptic-cylindrical coordinates;, ¢, z).2 These variables
can take the following values: Qn=<w, 0<¢=<2w, and
—w=<z<o, The relation between Cartesiar, (y, z) and
elliptic-cylindrical coordinates is given by

y=asinhysine, (1b)

d=(A1n—Ay)(Azz—Ay)




x tive charges at the extremities= =a. In the steady state this

2 redistribution of charges will create an electric field along the

R 0 —K x direction,E,, that will balance the magnetic force, namely,

-4 —=K —»K £ z |qEX|:|quB|.' . N .
We have disregarded this Hall electric field because it is

2 usually much smaller than the electric field giving rise to the

] o ) current!’ To estimate the orders of magnitude involved, it is
Fig. 1. A constant currerit flows along thez direction of a long straight easier to consider the currehtlowing uniformly in a long
strip of length 2 and width 2 located aty=0, with a surface current lind £l h 7 and radi | h o di
density given byK =12/2a. cylinder of length 2 and radiusa along the positive direc-
tion coinciding with the axis of this cylinder. This current
generates a cylindrical magnetic field given (ay a distance
r<a from the axi$ B=puolr d/2mwa?, where uq is the

x| Vx*—y?—a?+Q
X

E=—A, vacuum permeability and is the unit polar vector. The
xv2Q) magnetic force acting on an electron of chagge—e mov-
ing with drift velocity vq= —|vy4|Z relative to the lattice of
N [Xlyv2 V| (Asz—Ay) the wire is given byqvyx B=—|uoev4lr/i2ma’(?, wheref
Q\/xz_y?_a?jug is the unit radial vector. This inward radial force will lead to

s an accumulation of negative charges in the interior of the
Al AL tank L [X*—y"—a +Q—A 5 ©) wire, which creates a radial electric fidk pointing inward.
3| 2x? 2] In the steady state the electric and magnetic radial forces will

To find the surface charge density, we utilized the approxi—balance one another, qE,=qvyxB, yielding E,

_ 2 A~ . B . . . . _
mation close to the strigl¥|<a and|y|<a): = |,u0vdl_r/27ra IF. This electric field increases linearly in
side the wire. Its maximum value closete-a is given by

xly| . y . |E®{=|uovql/2mal. The longitudinal electric field giving
B=~—A Gz gm*t M\/ﬂy (AsZ—Aq) rise to the current can be obtained by Ohm’s latw: R,
whereV is the electromotive force along the wire of resis-
.yl R tanceR. For a wire of length 2 acted on by a longitudinal
—Ag| Agtanh ﬂ_AZ <. (M electric field|E,| pointing along thez direction, this voltage

is given byV=2¢|E,|, such that|E,|=RI/2¢. The ratio
The surface charge density(x, z) can be obtained by the petween the maximal radial electric field and the longitudinal
standard procedure utilizing Gauss's lafficE-da=Q/eg, one is given by E"E|=|uqvqf/maR=ug9al2|, whereg
where g is the vacuum permittivityda is a surface area is the conductivity of the wire and is related to its resistance
element pointing outward normal to the surface in eachhy R=2¢/gma?. We use the notatiog instead of the more
point, andQ is the total charge inside the closed surf&e standard notatiorr for the conductivity in order to avoid
The surface charge density is then obtained by consideringonfusion with the surface charge density, which is repre-
the limit in which |y|—0 in Eq.(7) and a small cylindrical sented byo.
volume with its length much smaller then its diameter, yield- To find the order of magnitude, we consider a copper wire
ing: o= e[ E(y>0)-§—E(y<0)-(—9)]. If we use Eq(7), (g=5.7x10" Q@ m andvy~4x10"3 ms 1) of 1 mm diam-
the surface charge density is found to be given by eter @=5x10% m). With these values in Ed8), we ob-
2eoAr(Agz—Ay) tain |E"™E,|~7x10"°, justifying our neglect of the radial
_ZrorTst Tl (8)  component of the electric field. Conceptually this neglect of

U: . .
vaZ—x? the radial component can be explained by the fact that the
Hall electric field is small because it is due to the small
IIl. DISCUSSION magnetic field produced by the conducting strip, rather than

a large applied magnetic field.

In the planey=0 the current in the strip creates a mag- We now analyze some particular cases. We first consider
netic field B that points along the positivenegative y di-  two limits by comparinga with the distance of the observa-
rection forx>0 (x<0). This magnetic field will act on the tion pointr=x>+y?. If a®>>r?, we haveQ~a?+y?—x?
conduction electrons moving with drift velocityy with a  +2x2y%/a? and »~|y|/a, such that
force given byqvy X B (see Fig. 2 This force will cause a
redistribution of charges along ttxedirection, with negative

ly|
charges concentrating along the center of the strip and posi- dw(

At A2 (Asz—Ay). 9

As expected, this result coincides with E@) of Ref. 11

= G = with yo=0, because only the cas&#>r? was considered
OE Z‘ I E;O z there.
@B %o HF B& On the other hand, ifa?<r?, we have Q~r2+a?

, , , _ —2a?x?/r? and p=Inr/a, such that
Fig. 2. Magnetic forceF=qvy X B directed along the center of the strip

acting on a conduction electron moving with drifting velooity. This force r
is due to the magnetic fiel8 generated by the electric currehtlowing d~| A In— —A, | (Asz—A ). (10)
along the positive direction. 1™a 4
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~

This result coincides with Eq8) of Ref. 10 with A,/A; y/a

=In(2¢/a), where( is the typical length of the wire or strip
being considered, withi>a. [Note that in Ref. 10 the length
of the wire alongz goes from—¢/2 to £/2, while here it
goes from—¢ to ¢ (see Fig. 1] This coincidence is reason-
able because E@8) of Ref. 10 corresponds to the potential
outside a long straight cylindrical wire carrying a constant
current. At a point far from the axis of the strip, both results
coincide as they must.

Equation (6) indicates that there is an electric field not
only along the resistive strip carrying a constant current, but
also in the space surrounding it. Jefimenko has peformec-
some experiments that show the existence of this externa
electric field. The geometry of his first experiméfrepro-
duced in plate 6 of Ref. 13, is equivalent to what has been
considered here: a two-dimensional conducting strip made
on a glass plate using a transparent conducting ink. To com
pare our calculations with his experimental results, we neec
the values ofA,/A; andA,/A;. We takeA,/A;=3.6 and
A, /A3=0. The conditiomrA,/A;=0 corresponds to the sym-
metrical case considered by Jefimenko in which the electric
field is parallel to the conductor just outside of it 20 Fig. 3. Equipotential linegdashed and electric field linegcontinuou$ in

(zero d_enS|ty OT surface chargeszat0). ) thex=0 plane. The bold horizontal lines represent the intersection with the
We first consider the plane orthogonal to the stxip,0. In plane of the strip. We use the valuds/A,=3.6 andA, /A;=0.
this case the potential reduces to

z/a

i
W 2

2
b=\ A1 tanhlxl%az—Az)(Aﬂ—A“). (11 By a similar procedure, the lines of electric field for the
y planey=0 are given by
The lines of the electric field orthogonal to the equipotentials ¥(|X|<a,02) = A,Azax, (15)

can be obtained by the procedure in Ref. 14. These lines are

represented by a functiogi such thatV - V¢ =0. Equation ) AlAz ,
(11), together with the value of obtained above, yield the #(|x|=a,02) = A1Asz"~ 2A1AsZ+ X
value of ¢ given by
X
= ALz 2AA AlA; —ALAg|x|Vx?—a? cosh*%
=A1AgZ" = 2A A4z + y
A1Az ||
2+a? + a?| cosh 1 —
—AAgly|Vy?*+a®cosh ! y—ar 2 a
AxAz
2 2\ 2 _ 2_ 472
B AlASaZ 7 +2a 7 x| Vx*—a
2 a
x|+ VX?—a?
ALA +\y?+a? 2] . (16)
- D |y|\/y2+a2+azln|y|+). (12 a

4 A plot of Egs. (13)—(16) is presented in Fig. 4. Figure 5

A plot of Egs.(11) and(12) is given in Fig. 3. presents the theoretical electric field lines and equipotential
We now consider the plane of the strip=0. The poten- lines overlaid on the experimental results of Ref. 12, where

tial reduces to the lines of the electric field in the plane of the strip are

mapped by spreading grass seeds above and around the two-

d(|x|=a,02)=—Ay)(Azz—A,), (13)  dimensional conducting strip painted on glass plates. The
e s?edshare pcl)larized An thehprlesencef o;‘ an el;acltéic fiek::l and

_ - align themselves with it. The lines of electric field are then

¢(|x[=a,02)=| A tanh* X2 _AZ) (AsZ=A2)  opserved in analogy with iron fillings generating the lines of

magnetic field. In Fig. 5 the electric field lines from Fig. 4

are overlaid on the experimental results of Jefimenko, Fig. 1

of Ref. 12 or plate 6 of Ref. 13. It should be mentioned that

. ] ) ) _the grass seeds are dielectric bodies and themselves change
When there is no current in the strip, the potential along itthe electric fields in their vicinity, so the experimental field

is a constant for alz. From Eq.(13) this condition implies maps cannot be exact; nevertheless, the correspondence

thatA;=0. This value ofA; in Egs.(5), (6), and(8) reduces found here is reasonable.

these equations to the known electrostatic solution of a strip The equipotential lines also were measured in Ref. 16

charged to a constant potenttal. where a rectangular hollow chamber with electroteami-

X
A, cosh’lg - Az) (Asz—Ay). (19
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Fig. 4. Equipotential linegdashed and electric field linegcontinuou$ in
the y=0 plane. The bold horizontal lines represent the boundaries of the
strip atx/a=1 andx/a=—1. We assumé\, /A,=3.6 andA,/A;=0.

num foil) for end walls and semi-conducting side walls Fig. 6. Equipotential lines in thg=0 plane overlaid on Fig.(8) of Ref. 16.
(graphite paper stripscarrying uniform current was used. We useA;/A;=3.0 andA;/A;=0.

Eighty volts were applied to the electrodes and the equipo-

tential lines were mapped utilizing a radioactive alpha source

to ionize the air at the points where the field was to be mea-

sured. The alpha source acquired the same potential as tgeod as in Fig. 5 for two reasons: One reason is that our
field at those points and the potential was measured with asalculations are for a two-dimensional geometry, while the
electronic electrometer connected to the alpha source. In Figxperiment in Ref. 16 was performed in a three-dimensional
6 the experimental result of Ref. 16 is superimposed on theectangular chamber. The second reason is that in the grass
equipotential lines calculated utilizing Eqél5) and (16)  seed experimettt the ratio of the length to the thickness of
with A,/A;=3.0 andA,/A;=0. The agreement is not as the conductor was 7, but in the second experirtfahts ratio

Fig. 5. Electric field lines of Fig. 4 overlaid on plate 6
of Ref. 13.
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