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We consider a long resistive straight strip carrying a constant current and calculate the potential and
electric field everywhere in space and the density of surface charges along the strip. We compare
these calculations with experimental results. ©2003 American Association of Physics Teachers.
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I. THE PROBLEM

Recently there has been renewed interest in the electric
field outside stationary resistive conductors carrying a con-
stant current.1–7 We consider a case that has not been treated
in the literature, namely, a constant current flowing uni-
formly over the surface of a stationary and resistive straight
strip. Our goal is to calculate the potentialf and electric
field E everywhere in space and the surface charge distribu-
tion s along the strip that creates this electric field.

We consider a strip in they50 plane localized in the
region 2a,x,a and 2,,z,,, such that,@a.0. The
medium around the strip is taken to be air or vacuum. The
constant currentI flows uniformly along the positivez direc-
tion with a surface current density given byK5I ẑ/2a ~see
Fig. 1!. By Ohm’s law this uniform current distribution is
related to a spatially constant electric field on the surface of
the strip. In the steady state this electric field can be related
to the potential byE52¹f. This relation means that along
the strip the potential is a linear function ofz and indepen-
dent of x. The problem can then be solved by finding the
solution of Laplace’s equation¹2f50 in empty space and
applying the boundary conditions.

II. THE SOLUTION

Due to the symmetry of the problem, it is convenient to
use elliptic-cylindrical coordinates~h, w, z).8 These variables
can take the following values: 0<h<`, 0<w<2p, and
2`<z<`. The relation between Cartesian (x, y, z) and
elliptic-cylindrical coordinates is given by

x5a coshh cosw, ~1a!

y5a sinhh sinw, ~1b!

z5z, ~1c!

wherea is the constant semi-thickness of the strip. The in-
verse relations are given by

h5tanh21Ax22y22a21V

2x2 , ~2a!

w5tan21Aa22x21y21V

2x2 , ~2b!

z5z, ~2c!

whereV5A(x21y21a2)224a2x2.
Laplace’s equation in this coordinate system is given by

¹2f5
1

a2~cosh2 h2cos2 w! S ]2f

]h2 1
]2f

]w2D1
]2f

]z2 50.

~3!

A solution of Eq.~3! can be obtained by using separation of
variables in the formf(h,w,z)5H(h)F(w)Z(z):

H92~a21a3a2 cosh2 h!H50, ~4a!

F91~a21a3a2 cos2 w!F50, ~4b!

Z91a3Z50, ~4c!

wherea2 anda3 are constants.
For a long strip being considered here, it is possible to

neglect boundary effects nearz56,. It has already been
proved that in this case the potential must be a linear func-
tion of z, not only over the strip, but also over all space.9

This condition means thata350. There are then two pos-
sible solutions forF~w!. If a250, then F5C11C2w; if
a2Þ0, thenF5C3 sinAa2w1C4 cosAa2w, whereC1 to C4

are constants. Along the strip we havey50, and x2<a2,
which means that V5a22x2, h50, and w
5tan21A(a22x2)/x2. Because the potential does not depend
on x along the strip, this independence means that the poten-
tial will not depend onw as well. Thus a nontrivial solution
for F can only exist ifa250, C250, andF5constant for
all w. The solution forH with a25a350 will be then a
linear function ofh. The general solution of the problem is
then given by

f5~A1h2A2!~A3z2A4!

5FA1 tanh21Ax22y22a21V

2x2 2A2G~A3z2A4!. ~5!

The electric fieldE52¹f takes the following form:
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E52A1S uxuAx22y22a21V

x&V
x̂

1
uxuy&

VAx22y22a21V
ŷD ~A3z2A4!

2A3S A1 tanh21Ax22y22a21V

2x2 2A2D ẑ. ~6!

To find the surface charge density, we utilized the approxi-
mation close to the strip (uxu,a and uyu!a):

E'2A1F xuyu
~a22x2!3/2 x̂1

y

uyuAa22x2
ŷG ~A3z2A4!

2A3FA1 tanh21
uyu

Aa22x2
2A2G ẑ. ~7!

The surface charge densitys(x, z) can be obtained by the
standard procedure utilizing Gauss’s lawtSE"da5Q/«0 ,
where «0 is the vacuum permittivity,da is a surface area
element pointing outward normal to the surface in each
point, andQ is the total charge inside the closed surfaceS.
The surface charge density is then obtained by considering
the limit in which uyu→0 in Eq. ~7! and a small cylindrical
volume with its length much smaller then its diameter, yield-
ing: s5e0@E(y.0)"ŷ2E(y,0)"(2 ŷ)#. If we use Eq.~7!,
the surface charge density is found to be given by

s52
2e0A1~A3z2A4!

Aa22x2
. ~8!

III. DISCUSSION

In the planey50 the current in the strip creates a mag-
netic field B that points along the positive~negative! y di-
rection forx.0 (x,0). This magnetic field will act on the
conduction electrons moving with drift velocityvd with a
force given byqvd3B ~see Fig. 2!. This force will cause a
redistribution of charges along thex direction, with negative
charges concentrating along the center of the strip and posi-

tive charges at the extremitiesx56a. In the steady state this
redistribution of charges will create an electric field along the
x direction,Ex , that will balance the magnetic force, namely,
uqExu5uqvdBu.

We have disregarded this Hall electric field because it is
usually much smaller than the electric field giving rise to the
current.10 To estimate the orders of magnitude involved, it is
easier to consider the currentI flowing uniformly in a long
cylinder of length 2, and radiusa along the positivez direc-
tion coinciding with the axis of this cylinder. This current
generates a cylindrical magnetic field given by~at a distance
r ,a from the axis! B5m0Ir ŵ/2pa2, where m0 is the
vacuum permeability andŵ is the unit polar vector. The
magnetic force acting on an electron of chargeq52e mov-
ing with drift velocity vd52uvduẑ relative to the lattice of
the wire is given byqvd3B52um0evdIr /2pa2u r̂ , wherer̂
is the unit radial vector. This inward radial force will lead to
an accumulation of negative charges in the interior of the
wire, which creates a radial electric fieldEr pointing inward.
In the steady state the electric and magnetic radial forces will
balance one another, qEr5qvd3B, yielding Er

52um0vdIr /2pa2u r̂ . This electric field increases linearly in-
side the wire. Its maximum value close tor 5a is given by
uEr

maxu5um0vdI/2pau. The longitudinal electric field giving
rise to the current can be obtained by Ohm’s law,V5RI,
whereV is the electromotive force along the wire of resis-
tanceR. For a wire of length 2, acted on by a longitudinal
electric fielduE,u pointing along thez direction, this voltage
is given by V52,uE,u, such thatuE,u5RI/2,. The ratio
between the maximal radial electric field and the longitudinal
one is given byuEr

max/E,u5um0vd,/paR5m0vdga/2u, whereg
is the conductivity of the wire and is related to its resistance
by R52,/gpa2. We use the notationg instead of the more
standard notations for the conductivity in order to avoid
confusion with the surface charge density, which is repre-
sented bys.

To find the order of magnitude, we consider a copper wire
(g55.73107 V m andvd'431023 m s21) of 1 mm diam-
eter (a5531024 m). With these values in Eq.~8!, we ob-
tain uEr

max/E,u'731025, justifying our neglect of the radial
component of the electric field. Conceptually this neglect of
the radial component can be explained by the fact that the
Hall electric field is small because it is due to the small
magnetic field produced by the conducting strip, rather than
a large applied magnetic field.

We now analyze some particular cases. We first consider
two limits by comparinga with the distance of the observa-
tion point r 5Ax21y2. If a2@r 2, we haveV'a21y22x2

12x2y2/a2 andh'uyu/a, such that

f'S A1

uyu
a

2A2D ~A3z2A4!. ~9!

As expected, this result coincides with Eq.~4! of Ref. 11
with y050, because only the casea2@r 2 was considered
there.

On the other hand, ifa2!r 2, we have V'r 21a2

22a2x2/r 2 andh' ln r/a, such that

f'S A1 ln
r

a
2A2D ~A3z2A4!. ~10!

Fig. 1. A constant currentI flows along thez direction of a long straight
strip of length 2, and width 2a located aty50, with a surface current
density given byK5I ẑ/2a.

Fig. 2. Magnetic forceF5qvd3B directed along the center of the strip
acting on a conduction electron moving with drifting velocityvd . This force
is due to the magnetic fieldB generated by the electric currentI flowing
along the positivez direction.
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This result coincides with Eq.~8! of Ref. 10 with A2 /A1

5 ln(2,/a), where, is the typical length of the wire or strip
being considered, with,@a. @Note that in Ref. 10 the length
of the wire alongz goes from2,/2 to ,/2, while here it
goes from2, to , ~see Fig. 1!.# This coincidence is reason-
able because Eq.~8! of Ref. 10 corresponds to the potential
outside a long straight cylindrical wire carrying a constant
current. At a point far from the axis of the strip, both results
coincide as they must.

Equation ~6! indicates that there is an electric field not
only along the resistive strip carrying a constant current, but
also in the space surrounding it. Jefimenko has peformed
some experiments that show the existence of this external
electric field. The geometry of his first experiment,12 repro-
duced in plate 6 of Ref. 13, is equivalent to what has been
considered here: a two-dimensional conducting strip made
on a glass plate using a transparent conducting ink. To com-
pare our calculations with his experimental results, we need
the values ofA2 /A1 and A4 /A3 . We takeA2 /A153.6 and
A4 /A350. The conditionA4 /A350 corresponds to the sym-
metrical case considered by Jefimenko in which the electric
field is parallel to the conductor just outside of it atz50
~zero density of surface charges atz50).

We first consider the plane orthogonal to the strip,x50. In
this case the potential reduces to

f5S A1 tanh21A y2

y21a22A2D ~A3z2A4!. ~11!

The lines of the electric field orthogonal to the equipotentials
can be obtained by the procedure in Ref. 14. These lines are
represented by a functionc such that¹c•¹f50. Equation
~11!, together with the value off obtained above, yield the
value ofc given by

c5A1A3z222A1A4z1
A1A3

2
y2

2A1A3uyuAy21a2 cosh21Ay21a2

a2

2
A1A3

2
a2S cosh21Ay21a2

a2 D 2

2
A2A3

4 S uyuAy21a21a2 ln
uyu1Ay21a2

a D . ~12!

A plot of Eqs.~11! and ~12! is given in Fig. 3.
We now consider the plane of the strip,y50. The poten-

tial reduces to

f~ uxu<a,0,z!52A2~A3z2A4!, ~13!

f~ uxu>a,0,z!5S A1 tanh21Ax22a2

x2 2A2D ~A3z2A4!

5S A1 cosh21
uxu
a

2A2D ~A3z2A4!. ~14!

When there is no current in the strip, the potential along it
is a constant for allz. From Eq.~13! this condition implies
thatA350. This value ofA3 in Eqs.~5!, ~6!, and~8! reduces
these equations to the known electrostatic solution of a strip
charged to a constant potential.15

By a similar procedure, the lines of electric field for the
planey50 are given by

c~ uxu<a,0,z!5A2A3ax, ~15!

c~ uxu>a,0,z!5A1A3z222A1A4z1
A1A3

2
x2

2A1A3uxuAx22a2 cosh21
uxu
a

1
A1A3

2
a2S cosh21

uxu
a D

2
A2A3

4 S uxuAx22a2

2a2 ln
uxu1Ax22a2

a D . ~16!

A plot of Eqs. ~13!–~16! is presented in Fig. 4. Figure 5
presents the theoretical electric field lines and equipotential
lines overlaid on the experimental results of Ref. 12, where
the lines of the electric field in the plane of the strip are
mapped by spreading grass seeds above and around the two-
dimensional conducting strip painted on glass plates. The
seeds are polarized in the presence of an electric field and
align themselves with it. The lines of electric field are then
observed in analogy with iron fillings generating the lines of
magnetic field. In Fig. 5 the electric field lines from Fig. 4
are overlaid on the experimental results of Jefimenko, Fig. 1
of Ref. 12 or plate 6 of Ref. 13. It should be mentioned that
the grass seeds are dielectric bodies and themselves change
the electric fields in their vicinity, so the experimental field
maps cannot be exact; nevertheless, the correspondence
found here is reasonable.

The equipotential lines also were measured in Ref. 16
where a rectangular hollow chamber with electrodes~alumi-

Fig. 3. Equipotential lines~dashed! and electric field lines~continuous! in
thex50 plane. The bold horizontal lines represent the intersection with the
plane of the strip. We use the valuesA2 /A153.6 andA4 /A350.
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num foil! for end walls and semi-conducting side walls
~graphite paper strips! carrying uniform current was used.
Eighty volts were applied to the electrodes and the equipo-
tential lines were mapped utilizing a radioactive alpha source
to ionize the air at the points where the field was to be mea-
sured. The alpha source acquired the same potential as the
field at those points and the potential was measured with an
electronic electrometer connected to the alpha source. In Fig.
6 the experimental result of Ref. 16 is superimposed on the
equipotential lines calculated utilizing Eqs.~15! and ~16!
with A2 /A153.0 andA4 /A350. The agreement is not as

good as in Fig. 5 for two reasons: One reason is that our
calculations are for a two-dimensional geometry, while the
experiment in Ref. 16 was performed in a three-dimensional
rectangular chamber. The second reason is that in the grass
seed experiment12 the ratio of the length to the thickness of
the conductor was 7, but in the second experiment16 this ratio

Fig. 4. Equipotential lines~dashed! and electric field lines~continuous! in
the y50 plane. The bold horizontal lines represent the boundaries of the
strip atx/a51 andx/a521. We assumeA2 /A153.6 andA4 /A350.

Fig. 5. Electric field lines of Fig. 4 overlaid on plate 6
of Ref. 13.

Fig. 6. Equipotential lines in they50 plane overlaid on Fig. 3~a! of Ref. 16.
We useA2 /A153.0 andA4 /A350.
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was only 2.3, which means that boundary effects nearz5,
andz52, are more important. These boundary effects were
not considered in our calculations.

One of the main aspects of this work is that we succeeded
in finding a theoretical model yielding reasonable results
which were compared with two different experiments al-
ready published in the literature. As discussed above, these
experiments mapped the electric field lines and the equipo-
tential lines inside and outside the regions of steady currents
in conductors. The geometry considered here had never been
dealt with in this problem before. In order to obtain this
result it was necessary to use elliptic-cylindrical coordinates
(h, w, z). The general solution for the potential in terms of
these variables is reasonably simple, namely,f5(A1h
2A2)(A3z2A4). When expressed in terms of the usual Car-
tesian coordinates (x, y, z) the solution takes the compli-
cated form of Eq.~5!. We could not obtain this solution
working only with cartesian coordinates. In this problem the
pure cylindrical coordinates are not so practical as well. The
situation described here shows an important example of the
usefulness of the elliptic-cylindrical coordinates in dealing
with reasonably simple problems of physics.
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