Przykład 1 - Problem dyfuzji z reakcją (w jednym wymiarze, 1D)

Opis problemu

Układy równań reakcji z dyfuzją mogą modelować wiele różnych zjawisk fizycznych, chemicznych lub biologicznych. Łączą one proces transportu dyfuzyjnego z reakcjami, które lokalnie powodują wytwarzanie lub zużywanie wielkości, których zmienność w czasie i przestrzeni modelujemy. Typowym przykładem są reakcje chemiczne w przypadku, gdy początkowe rozkłady stężeń nie są stałe w przestrzeni. W takim procesie jednocześnie będzie zachodziło dyfuzyjne przemieszczanie się materii z równoczesną zmianą jej stężenie na skutek zachodzących reakcji. Oba te czynniki działają na siebie powodując możliwą bogatą i trudną do przewidzenia dynamikę.

Najprostszym nietrywialnym przykładem układu fizycznego, którego opis prowadzi do równania reakcji z dyfuzją jest dyfuzja pojedynczego składnika wraz z ubywaniem go na skutek reakcji o kinetyce pierwszego rzędu, przy czy produkty tej reakcji zaniedbujemy. Dobrą ilustracja może być tutaj dyfundowanie izotopu radioaktywnego w pręcie.

Z prawa rozpadu promieniotwórczego wiemy, że jeżeli w danym momencie ilość izotopu wynosi N, to w niedużym okresie Δt rozpadowi ulegnie ilość izotopu proporcjonalna do N i Δt . Mamy więc

$$\Delta N = -k N \Delta t, \tag{1}$$

gdzie stała k opisuje szybkość rozpadu, (s⁻¹), ΔN to ilość, która uległa rozpadowi ($\Delta N = N(t + \Delta t) - N(t) < 0$). Jeżeli podzielimy obie strony równości (1) przez objętość otrzymamy zmianę stężenia (jeżeli ilość izotopu była wyrażoną w molach, to będzie to stężenie molowe c):

$$\Delta c = -kc\Delta t \quad \Rightarrow \quad \frac{\Delta c}{\Delta t} = -kc, \tag{2}$$

Co po przejściu do granicy $\Delta t \to 0$ daje objętościową szybkość ubywania izotopu na jednostkę czasu, czyli człon reakcyjny:

$$R(c) = \frac{dc}{dt} = -kc.$$
 (3)

Z drugiej strony działa proce dyfuzyjnego przemieszczania się cząsteczek izotopy, który możemy opisać pierwszym prawem dyfuzji

$$\mathbf{J} = -D\frac{\partial c}{\partial x}.$$
 (4)

Z prawa zachowania mamy więc

$$\frac{\partial c}{\partial t} = -\frac{\partial \mathbf{J}}{\partial x} + R(c),$$

gdzie J oraz R(c) dane są wzorami (3) i (4).

Problem możemy uzupełnić warunkami brzegowymi, na przykład zakładając, że izotop nie opuszcza pręta przyjmiemy, że na brzegach (lewym i prawym) strumień jest zero:

$$J(0,t) = 0, \quad J(L,t) = 0, \tag{5}$$

czyli

$$-D\frac{\partial c}{\partial x}(0,t) = 0, \quad -D\frac{\partial c}{\partial x}(L,t) = 0, \tag{6}$$

Ponadto przyjmiemy warunek początkowy taki, że w pobliżu lewego końca w chwili zerowej skupiony był izotop o stałej koncentracji:

$$c_0(x) = c(x,0) = \begin{cases} c_L & \text{dla } 0 \le x \le \frac{1}{5}L, \\ 0 & \text{dla } \frac{1}{5}L < x \le L. \end{cases}$$
(7)

Sformułowanie problemu: Rozważamy następujący problem dyfuzji z reakcją w układzie zamkniętym:

$$\begin{cases} \frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} + R(c), & (a) \\ \frac{\partial c}{\partial x}(0,t) = 0, & \frac{\partial c}{\partial x}(\ell,t) = 0, & (b) \end{cases}$$
(8)

z warunkiem początkowy $c(x,0) = c_{pocz}(x)$ dla $x \in [0, \ell]$. Funkcje $c_{pocz}(x)$ oraz R(c) są dane. Użyjemy modelu, w którym

$$R(c) = k c (A - c).$$
⁽⁹⁾

Model reakcji z dyfuzją, gdzie człon reakcyjny ma postać (9) znany jest w literaturze jako równanie Fishera (lub Fishera–Kołmogorowa). W roku 1937 R. Fisher zaproponował taki model do opisu rozprzestrzeniania się genu mającego przewagę. Widać z równania (9), że dla małych stężeń $R \sim (kA)c$, tzn. Jest wykładniczy wzrost. Ale gdy stężenie staja się większe, pojawia się "wysycenie" I przy c = A mamy R = 0.

Zadanie: Wykonaj symulacje dla członu reakcyjnego R(c) = k c (A - c) i warunku początkowego typu "schodkowego" (Heaviside'a):

$$c_{pocz}(x) = \begin{cases} c_{pocz,L} & dla \ x \le l/2 \\ c_{pocz,P} & dla \ x > l/2 \end{cases}$$
(10)

Obliczeń dokonaj dla następujących danych: *I*=1, *D*=0.01, *k*=1.2, *A*=2.5, *c*_{pocz,L}=0.3, *c*_{pocz,P}=1.2. Wyniki przedstaw w formie wykresów zależności stężenia od czasu dla wybranych czasów: 0, 0.5, 1, 1.5 i 2 s.

Rozwiązanie:

1. Najpierw równanie (8) (a) musimy zapisać w formie akceptowalnej przez COMSOL, tj. równania bilansu składnika wraz z odpowiednim równaniem konstytutywnym na strumień składnika:

$$\frac{\partial c}{\partial t} + \frac{\partial \Gamma}{\partial x} = R(c), \quad \Gamma = -D \frac{\partial c}{\partial x}$$
(11)

- 2. Możemy już uruchomić program COMSOL Multiphysics 5.6
- 3. Po otwarciu programu wybierz Model Wizard

4. Następnie w sekcji Select Space Dimension wybierz geometrię 1D

5. W sekcji *Select Physics* rozwiń ścieżkę *Mathematics > PDE Interfaces*, wybierz *General Form PDE* i naciśnij przycisk *Add*. W lewej części okna w zależności od potrzeb możesz zmienić oznaczenie zmiennej, która domyślnie jest oznaczona literą "u". Następnie wciśnij przycisk *Study*.

Select Physics		Review Physics Int	erface
	Search	General Form PDE (g)	
Q Recently Used AC/DC	^	Dependent Variables	
 III Acoustics III Acoustics III Transfer Au Mathematics Au PDE Interfaces Coefficient Form PDE (c) Au General Form PDE (c) Au Wave Form PDE (w) Au Wave Form PDE (w) Au Wave Form PDE (w) Au Cover Dimensions Au Over Dimensions 		Field name: Number of dependent variables: Dependent variables:	c
Optimization and Sensitivity	~	Units	
Added physics interfaces:	Add	Dependent variable quantity	
△u General Form PDE (g)		Source term quantity	
		None	-
		Unit: m^-2	
	Remove		
Generation	Study		
? Help 🗙 Cancel 🗹 Done			

6. W sekcji Select Study wybierz opcję Time Dependant i naciśnij przycisk Done.

Select Study	Time Dependent
SP Preset Studies Eigenvalue Stationary Time Dependent No Time Dependent So Custom Studies Se Empty Study	The Time Dependent study is used when field variables change over time. Examples: In electromagnetics, it is used to compute transient electromagnetic fields, including electromagnetic wave propagation in the time domain. In heat transfer, it is used to compute temperature changes over time. In solid mechanics, it is used to compute the time-varying deformation and motion of coldis subject to transfer loads. In accustics, it is used to compute the time-varying propagation of pressure waves. In fluid flow, it is used to compute changes to the time thermal computer fields. In chemical species transport, it is used to compute chemical composition
Added study:	and the chemical composition of a reacting system.
10 Time Dependent	
Added physics interfaces:	
[∆] ^µ General Form PDE (g)	
O Physics	
? Help Cancel Done	

7. Po wykonaniu poprzednich kroków otwiera się okno projektu zdefiniowanego przez wybory dokonane w ramach *Model Wizard.* Pierwszym krokiem od którego należy rozpocząć rozwiązywanie zadania jest wprowadzenie parametrów modelu (danych), które będą wykorzystywane w tym projekcie. W tym celu kliknij prawym przyciskiem myszy *Global Definitions*, znajdujące się w lewej części ekranu i z listy wybierz *Parameters*.

8. W oknie *Settings* pojawi się tabela w której będziesz mógł wprowadzić w kolumnie *Name* nazwy parametrów modelu podanych w treści zadania, a w kolumnie *Expression* ich wartości. Liczby w kolumnie *Value* są generowane automatycznie.

9. Kolejnym etapem będzie wykonanie odpowiedniej geometrii. W tym celu w **Model Builder** kliknij prawym przyciskiem myszy na *Geometry 1* i z listy wybierz *Interval*.

File V Home De A Application Builder Application	finitions efinitions G	Geometry Materials	his Physics M Aw General Form PDE Add Physics Physics	esh	Study Resu Build Mesh Mesh 1 • Mesh	E Compute Compute Study 1 Study	er Select Plot Group - Add Plot Group - Results	C Reset Desktop • Layout	
Model Builder ← → ↑ ↓ ▼ ↑ ■ ↓ ■ ↓ ■ ↓ ▼ ↑ ■ ↓ ■ ↓ ▼ ↑ ■ ↓ ■ ↓ ▼ ↓ ■ ↓ ■ ↓ ↓ ↓ ■ ↓ ↓ ■ ↓ ↓ ↓ ■ ↓ ↓ ↓ ■ ↓ ↓ ↓ ■ ↓ ↓ ↓ ↓ ↓ ■ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Settings Geometry Build All Label: Geometry 1 Units Scale values wh Length unit:	en changing units	~ !	Graphi Q Q 3 B S E	cs ⊕ [] ↓ ວ ວ			* *
A Materials A △ General Fo General General General General General A Start 1 A ∞ Study 1 Mesh 1 Study 1 Mese 1: Tim P Results	Build A	NI t	F8	•					
K	Insert 5 Copy a Renam Setting Proper Help	Sequence as Code to Clipboard ne gs tties	F2 F1		COMSOL M	-0.5 Progress ultiphysics 5.3.0.	Log 316	0.5	- # ×

10. Nasza geometria jest złożona z dwóch odcinków: [0, *I*/2] i [*I*/2, *I*]. Aby je dodać do geometrii w sekcji *Interval* w oknie *Number of Intervals* zmień *One* na *Many*. Następnie w oknie *Points* wprowadź wartości punktów początku pierwszego interwału, końca pierwszego interwału (a zarazem początku drugiego interwału) oraz końca drugiego interwału. Wartości należy oddzielić od siebie przecinkiem. W celu wykonania zadanej geometrii wybierz przycisk *Build Selected* w oknie *Settings*.

File Home Definitions	Geometry Materials Physics Mesh	itudy Results Developer 🔳
Application Builder Application	Au General Form PDE •	Build Mesh = Compute Select Plot Group - The Windows - Mesh - - Add Plot Group - The Select Plot Group - Mesh Study 1 - - Results Mesh Study 2 Results Layout
Model Builder	Settings	Graphics
		0 0.2 0.4 0.6 0.8 1
		Messages Progress Log - # ×
6		COMSOL Multiphysics 5.3.0.316

11. Kolejnym etapem będzie wprowadzenie równania (podanego w zadaniu), które chcemy rozwiązać. W tym celu lewym przyciskiem myszy kliknij na przycisk **General Form PDE 1**. W oknie **Settings** wprowadź wartości odpowiednich parametrów tak aby wbudowane w Comsol równanie przekształcić w równanie podane w treści zadania. W polu **Mass Coefficient** - e_a należy wprowadzić wartość 0,

ponieważ nasze równanie nie zawiera drugiej pochodnej po czasie ze stężenia. W polu **Damping** or **Mass Coefficient** - d_a wprowadź wartość 1, ponieważ taki współczynnik jest podany w równaniu dla pierwszej pochodnej po czasie ze stężenia. W polu **Conservative Flux** wprowadź wyrażenie -**D***cx które oznacza iloczyn współczynnika dyfuzji i pierwszej pochodnej cząstkowej po odległości ze stężenia. Wprowadzenie znaku minus, powoduje przeniesienie na druga stronę równania. W polu **Source Term** należy wprowadzić zadaną funkcję: **k*c*(A - c)**.

Z komentarzem [AG1]: Source term w dalszym ciągu podświetla się na żółto - jednostki są takie same jak w poprzedniej wersji instrukcji, gdzie tego problemu nie było