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Introduction

The goal of this project is to understand physicochemical model and develop the numerical
simulations of electrodiffusion problems in one dimensional geometry. This model can be used in
particular to predict the membrane potential and consequently be applied to more fundamental
modeling of ion selective membrane electrodes (ISEs) than is offered by classical steady state, semi-
empirical descriptions based on the Nikolskii-Eisenman equation. Such membranes are basic part of
chemical sensors use in analytical chemistry. After learning how to simulate concentration profiles
and electric potential time evolution students will proceed to the second part of the project which is
to present the impedance spectra derived from basic electrodiffusion equations. In this model,
electrodiffusion (diffusion and migration under the electrical field) is governed by the Nernst-Planck
flux formula (constitutive equation), and the electric interaction of species is described by the Poisson
equation.’

This is the first part of the assignment which contains a theoretical description of the mathematical
model with short introduction to the C++ implementation issues. The second part contains details on
what students are required to carry out.
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Fig. 1. A three-dimensional view of a flat shaped membrane surrounded by electroneutral electrolyte solutions. The
membrane itself is not electroneutral and due to the charge separation a potential difference is developed across it.

Electro-diffusion in a membrane

A schematic view of the membrane with diffusing species is presented in Fig. 1. The membrane is of
course a three-dimensional object but if we can assume its homogeneity in ¥ and Z axis a
description may be reduced to one-dimensional model in which the membrane is represented simply
as an interval [0, d] on the real axis R. This is illustrated in Fig. 3.

Fig. 2. One-dimensional representation of the membrane.

The ion flux in space is described the Nernst-Planck formula

! In fact the basic law which will be used here is Gauss law, divE =ép, not the Poisson equation

A(p=—ép, where @ is the electric potential. Even more, the Gauss law will not be used in the stated

form, but instead we will make use of the so called displacement current equation which can be derived from
Gauss law.
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oc; F .
J.(x,t)=-D, &(X,t)-F D, ﬁzici(x,t)E(x,t), (i=1...,r) (0.1)

where:

I — the number of components (species),
C; — the concentration of the i-th species,

D, —the diffusion coefficient of the i-th species,

Z, —the charge number (valence) of the i-th species (for non-ionic component z; =0),

E — the electric field,
R, F,T —the gas constant, Faraday constant, and absolute temperature.

The law of mass conservation (also referred to as the continuity equation) in a differential form reads
as
oc. &l

p = (i=1...,r). (0.2)

This is however not enough as we have r+1 unknown functions Cl,...,Cr,E and the mass
conservation (for each component) in (0.2) provides I equations. To relate electric field with
concentration we can use the Gauss law which in one dimension has the form

oE 1

ey (0.3)
oX &8,

r

where &, —the permittivity of free space (electric constant), & —the relative permittivity of the

material, p—the space charge density. If the concentrations are expressed in [mol/m?], then the

charge density is

p(xt) = Fzr: z.c.(X,t). (0.4)
i-1
Combining (0.3) and (0.4) gives
oE F O
— (X t)=— C (X, 1), 0.5
= %D 8%}2.0.(” (05)

where for short we used & = &,&,. But we will not use it in this form. If we are to base the numerics

on the method of line it is more convenient to have expression for % rather than %. From (0.5)
and (0.2) we infer the following
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CE - 2E -0 & (this symmetry is true provided that E = E(X,t) is smooth

and making use o

enough) the above equality can be rearranged as

0(0E F
OX

=, ZiJi]:O for xe]0, d].
ot &¢I

This equation in turn says that the expression in the bracket does not depend on the space variable
X €[0, t]. In other words

OE F{ 1

—+—N"z2J ==1(t), 0.6

p gZ ~1 (0.6)
or

oE 1 F

—=Z1t)-=>zJ. 0.7

S =10 EZ (0.7)

In this form of Gauss equation called the displacement current equation the term 1(t) is interpreted

as the total current density flowing through the membrane.

To summarize we have the following set of partial differential equations (PDEs) describing the
electro-migration movement of species in the membrane

%:—%, (i=1...,r)

o1 Fe 02
E-_Cim-=Y 24,

a0 ,9; i

where J, =-D, (%—LZ-C-E].

The NPP system (0.8) must be completed with the boundary conditions. The simplest ones would be
the Dirichlet boundary conditions at both end of the membrane

(0,t)=c ., c(d,t)=cC  ,
{9( )=C, Gd)=c, (0.9)
1=1...,r,

where C; | and C; ; denote the concentrations in the left and right bathing solutions respectively. In

particular the conditions (0.9) mean that there is no jump of concentrations at the interface. More
general conditions that we are going to adopt here are the so called Chang-Jaffé boundary conditions
which prescribe the fluxes at the membrane boundaries. They relate the interfacial fluxes to
heterogeneous rate constants and concentrations at the surfaces inside and outside the interfaces as
following
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J;(0,1) = ki,Lf G~ ki,LbCi (0.1),
3,(d,1) = =K, o & ¢ +K; € (A1), (0.10)
i=1..r,

where K; ., K; ,,Ki g 1K g, are forward and backward heterogeneous rate constants at the left and
right interface for i-th species. Let us note that if, for example k; ,, =k; ; =0, then the left interface

is impermeable to the component i-th (it is blocked). On the outer hand vary large ki’Lf means that

the interface dos not hinder passage of the component form the bulk into the membrane. If both are

very large, k . =k . — o0, passage in both direction at that boundary is free. In practice “very
i,Lf i,Lb

large” means here values of the order 100 [m/s].

The final information needed to describe completely this membrane system in time evolution way
are the initial conditions. They prescribe the values of concentrations and electric field in the
membrane at time t =0. Thus we have

{Ci (x,0)=c,;(x), (i=1...r),

(0.11)
E(x,0) = E,(¥),

where functions Cy;(X), Ey(X) for X [0, d] are given.

The use of the initial conditions differ a bit depending on whether we perform the simulations for
standard potentiometric or for electrochemical impedance spectra (EIS) applications.

For the potentiometric response modeling the usual starting point for simulations are initial
conditions that satisfy electroneutrality thus

{ci(x,O) =G (%), (i=1...1), (0.12)

E(x,0) =0,

;
and initial concentrations hold ZZiCOVi(X) =0. In most cases here the functions C,;(X) are piece-
i=1

wise constant.

For impedance spectra (EIS) simulations we have to compute the potential response of the steady
state system which was slightly perturbed. To obtain the steady state (bear in mind the conditions
(0.12) are not steady state values in general) we start with usual initial conditions of the type (0.12)
and carry out computations until the steady state is reached. At this stage the values of C;, and E do

not change further in time and the describe our membrane at steady state. Now, we take these
profiles as the initial conditions (0.11) and add a perturbation by way of a small current | in (0.8).
The resulting potential evolution is transformed by way of suitably chosen transform (based on the
Fourier transform) which finally produces the sought for impedance spectra.



Electrochemistry: Advanced Modeling and Simulations, AGH, Krakéw.
Notes for the Project, part 1 (description of NPP model and numerical aspects)
Department of Solid State Chemistry

Dimensionless NPP system of equations

The NPP system embodied in equations (0.8) and conditions (0.10), (0.11) can now be numerically
treated. However, it is profitable to introduce a set of dimensionless quantities of length, time,
concentrations and electric field. From a pure mathematical perspective such change of variables
gives fully equivalent system, but may be helpful for numerical computations. Firstly, the number of
parameter appearing in equations will be decreased. Secondly, the numerical accuracy may be
substantially improved.

The equations may be converted into a set of dimensionless (rescaled) equations with the following
transformations (overbar denotes a dimensionless quantity:  — dimensionless, ( — with units)

x=xX, t=tt, c=cC, E=EE,
2

B Gt Sy S (0.13)

RTe g, RT t

D =D -t /X, k =k /K.

A

S

where X, i, C,, Es are suitable scaling factors for distance, time, concentration and electric field.

After calculations we arrive at the following rescaled form of NPP system for X €0, CT]

a_tl__?y =1l" |r1
o X (0.14)
—_—= ) Zi JI ,
o
where the flux is given by
3 --5.%5 Btk (0.15)
X
The Chang-Jaffé boundary conditions
JI(O,'[_) = k. 1 CiL _K LbEi(O’t_)’
o (0.16)

where E‘Lf, E‘Lb, E,Rf, K,Lb are rescaled (dimesionless) heterogeneous rate constants for the left

and right membrane boundary.

To ease the burden of notation we drop the overbars in all quantities hereafter.

Space discretization
The schematic view of the space grid together with the location of concentrations, fluxes and electric
field points are presented in the Fig. 3.
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Fig. 3. Space grid and discretized functions c;(x,t) and E(x,t).

dc Jr—g0

) =2 'x,t——— De_Jd " k=0,

() (%, 1) (%, 1) Gh)
dc¥ oc. oJ. Jkt_ gk
— ) =—"(x,,t)=—(x ,t)r—1  k=1....n-1 0.17
OIt() at(k) 8X(k) s (0.17)

n n+1_ n
.ﬁia)zgﬁ(ai)z_gﬂ_&i)z_Ji L1 k=n.
dt ot X (Ghy)

The flux is approximated at internal nodes by the following finite differences

k k-1 k k-1
J :_Di[ci - G ;5 +20‘ Ekj, k=1...,n-1. (0.18)
k-1

Thus combining (0.17) and (0.18) we obtain (for internal nodes)

k kil _ ok ok okl
dc; 2D, {Ci G G -G _l_%zi((cik ok E _(Cik+1+cik)Ek+l):|’

dt h_,+h| h he_, (0.19)

k=1...,n-1.
Space discretization for the electric field at the internal nodes gives

dEk
()_ (k1/2' /IZZI i
what after taking account of (0.18) can be written as
dEk r C-k_l C-k +C-k_1
—22: z,D, Lz A EY| k=1...,n (0.20)
hk 5 2

On the boundaries (that is X=X, and X=X, ) we have to use expressions (0.16) for fluxes which

have the following form in the discrete notation

o 0
= ki G, L_ki wCi»
(0.21)

n

n+1
‘] klRfC|R+k|RbC '
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Hence on the boundaries we have for concentrations

0 1_q0 1 A0 1 0
d(;: (t):—Ji ‘Ji _E(DiLCi Ci _Zi Ci +Ci ElJ"'ki,LfCi,L_ki,LbCioJ’

(3h) h hy 2 025
dCin Jin+l _ Jin 2 . Cin _Cin—l Cin + Cin—l . ( ) )
(t) == 1 = ki,Rf Cir— ki,RbCi - Di —Z E 1
dt (2 hn—l) hn—l hn—l 2
an for electric field

dEO r 0

it = /12 Z;(=k; 1 L K 15C),

4 ':1r (0.23)

dt = /12 Z; (ki,Rf Cir— ki,RbCin)-
i=1

The system consisting of (0.19), (0.20), (0.22), and (0.23) is in fact a system of ordinary differential
equations (ODEs) which can be numerically integrated. For convenience we repeat it here in one

compact form

0 1.0 1, .0
de; _ 2 (Di[ci G - Gt El]+ki G —K Lbcio}’ k=0,
hO 2 il ) 1

dt  h

K Kl ok ak akel
dc, 2D, {Ci G G -G +%Zi((cik+cik1)Ek _(Cik+1+cik)Ek+l):|’ 1<k<n-1

dat

dt  h_,+h h, h,
n n_ An-l n n-1
di:i(kwcm —kK; oG — D, {Ci 5 - Z; 45 Enj], k=n,
- h LS 2 (0.24)
dE?° r o
dt :/IZ 5 (_ki,LfCi,L +ki,LbCi ), k=0,
i1
k r k _ ~k-1 k k-1
L) oY [ P s W 1<k <n,
dt i=1 hk—l 2
n+l r
i _/12 Z,(K; 5 Ci g —Ki oG, k=n+1.
i1

The unknown function are: Cik [k=0,...,n,i=1...r]; EX: [k =0,...,n+1] thus the number of
differential equations in this system is (r +1)(n+1)+1. But if we want now to apply some numerical

procedure to integrate the system of ODEs (0.24) we have to resolve one problem. Namely, most
procedures implemented in C/C++ language require the input function (right-hand side) defined
through one-dimensional table. For example the integrator that will be used here, RADAUS5, has the
main routine called StiffIntegratorT that must be provided with ODEs system based on the

following form ( N =number of equations)
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y(; = fo(t’ Yor-ees yN—l)’

.y(; = f,(t, Yo, Vo) (0.25)

yl,\l—l = fN—l(t’ Yor-eo nyl)'

in which all equations are referenced by a single index j=0,..., N —1. Technically this information

is provided in the form of a C++ function that has the following prototype ( X here stands for time, t)
void Function(double x, double *y, double *T)
and it directly fits into the form (0.25) as now we can define Function by straightforward substitution

void Function(double x, double *y, double *f) {
f[O0] = fo(x, yIO]l,..-,yI[N-1]1;
f[1] = f.(x, yl[O]l,...,y[N-1];

}

However, our discretized NPP system (0.24) is not expressed in the form (0.25) because we have

used there a double index notation Cik where i stands for a component and K for a node. We have

to devise some way of converting Cik into y,. The simplest solution seems to be the following
translation

0G,k) = (n+1)- (i —1) + k. (0.26)

In this scheme: i =1,...,r, k=0,...,n (for concentrations) and i =r+1, k =0,...,n+1 (for electric

field). To present it in more clear way we work out in details two species (components).

One index notation for - the two component case (r = 2)

Transformation (i,K) = j, is displayed below

0 1 .2 n-2 n-1 n 0 1 2 n-2 n-1 n 0 1 2 n-1 n n+l
c,.c,c,....,.¢c, ,¢ ,¢,¢, C,C,..., ¢,°,¢c,,¢c, E, E, E°,...,, ET,E, E 027)

yO’ yl' yZ 1000 yn—z’ yn—l’ yn ' yn+1’ yn+2’ yn+3’ e yZn—l’ y2n 4 y2n+l’ y2n+2’ y2n+3’ y2n+4’ ey y3n+1’ y3n+2 ! y3n+3

The high-hand side of the ODEs system Yj=f;(Y;,...,Vs,3) in R (j=0,...,3n+3),

described by (0.24) takes now the following form

2 _ N |
fo :h_{Dliylh yO —Zl y1 > yO y2n+3j+kl,LfC17|— _kl’LbyOJ’ j :O,
0 0
2D Yian =Y Yi— Y Yiat+ VY Yi+Yi, -
f = 1 j i_diT i j YtV R
i hj—l+hj l: hj hj71 1[ 2 y2n+2+1+l 2 y2n+2+1jj| J

2 Yo~ You o Yot Vo _
f, :m{kmfclfe _kl,Rbyn - D1[ h . L Z > : Y3n+2]} J=n,
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2 yn+ _yn+ yn+ + yn+ .
fn+l :h_(Dz( 2 h L Z, 2 2 : y2n+3j+ kz,Lfcz,L _kZ,Lbyn+lj' = n+11
0
2D, | Yin =Y Yi—VYiu YiatY; YitVia .
f. = 2 ! L2 = 2= PR E A S :n+2,...,2n,
J h I: hj_n_l hj_n_2 2( 2 yn+l+]+1 2 yn+1+]}} J
2 y n+l y n y nat T y n H
f2n+1 =h_(k2,Rf Cz,R - kz,Rby2n+1 - Dz( 2 1h 2 — Z, 2 12 2 Yani2 jj’ ]= 2n +1,
n-1

f2n+2 = 2’(21 (_kl,Lf G+ kl,Lb yo) +1 (_kz,Lf Gt kz,Lb yn+1))’ J =2n+2,

Yicon2 = Yj-2n-s Yicon2 T ¥Yj-2n-s Yina—Yino Yiona T Yoo
f-1lzD |2 j _, i j |+7D j j _, Ji j 1
J ( ' 1{ hj—zn—s ' 2 yj] a ( hj—2n—3 i 2 yJ J]

j=2n+3,...,3n+2,
f3n+3 = /’i’(zl(kl,Rf Cir— kl,Rb yn) +1, (kz,Rf Cor— kZ,Rb y2n+1))7 J =3n+3.

One index notation for any number of species
In a general case of any I it is convenient to use auxiliary function for translation from two indices
(i,k) to one. A natural choice is (0.26) although in the actual code a slight modification was applied

and the function really is
0(i,K) = (n+12)-i +K, (0.28)

due to the fact that tables in C++ are normally indexed from 0, thus it is more convenient to number
components by index i that runs from 0 up to r—1. Hence 0<i<r -1 refers to concentrations
and i =r refers to electric field. Using this device the coding is straightforward implementation of
formulas from (0.24). For example the part corresponding to internal nodes for concentrations (the
second equation in (0.24)) is codes as follows
for (1I=0; 1 <= r-1; I+H)
for (k=1; k <= n-1; k+) {
o = IIGLKD TG LOD/MKI-0. 52O kDTG LOD*YIIr, kD]
tp += -, 01y, k-DD/MK-1]0. 5[ AL IO T+ GL. D DY O T
T@G.K91 = 2Dl mp/ (h[k-11+h[KD);
}

The total membrane potential

At any time the total membrane potential @, (t) can be computed by integrating the electric field

across the membrane of thickness d :

d
@y, (1) = —[ E(x, t)dx. (0.29)
0
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In the numerical solution to NPP system we employed the space grid shown in Fig. 3 so the values of

electric {E}I*} field are known at points X,, X,_,,,(L<Kk <n), X . The integral (0.29) is numerically

approximated by the trapezoidal rule over each sub interval

[XO’ X1/2]""’ [kalIZ’ Xk+1/2]""’ [anll2’ Xn]’

hence

d
@y, (1) =~ E(x, t)dx~
0

h E°+E! Jorh E'+E? o thy E+E" o E"+E™
2 2 2 2 2 2 2 2

n-1
%(hO(EO +E+h (E"+E"™)+ > (h,+h)(E"+ Ek*l)j.
k=1
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