Electrochemistry: Advanced Modeling and Simulations, AGH, Krakéw.
Notes for the Project, part 2 (Comments on the source code and program)
Department of Solid State Chemistry

Input and output data

The resulting system of ordinary differentia equations (ODEs) exhibits stiffness so special
integrator is needed. In our case we will is the C++ implementation of RADAUS5, which originally was
developed by Hairer and Wanner in Fortran. The project for Dev-C++ environment was prepared and
is included in the npp, BB.zip file. Download and unpack this file to any folder, and next click on the
npp, BB.dev file. It will open in Dev-C++ environment (provided it is installed on your computer) and
is ready to use. After any changes you make the project should be recompiled (for example by
selecting Execute | Rebuilt All or by using shortcut Ctrl+F11). This produces an executable file npp,
BB.exe in the same folder and you can run this program from the command line window. The output
of the program consists of two files

res-c(x,t).txt — contains the concentration profiles for selected times
res-mempot(t).txt — contains the membrane potential for selected times

and the membrane potential is also displayed in the window (together with some additional
information such as grid distances or initial values — just for checking purposes).

The profiles in space variable XE[O, d] are stored in res-c(x,t).txt file in rows. Each row is
preceded by the time information and next there are I rows (one for every component). Every row
contain exactly n+1 values (for each node in the grid) separated by spaces. Here is an example for
three component simulation (r = 3)

t=4.00:
0.004850 0.004941 0.005006 0.005053 0.005087 0.005853 0.006184
0.005164 0.005166 0.005167 0.005168 0.005168 0.005768 0.007158
0.005169 0.005169 0.005173 0.005170 0.005184 0.006370 0.006531
t=6.00:

The membrane potential as a function of time is stored in the res-mempot(t).txt file in two columns:
the first contains selected times and the second corresponding potential. Values are separated by
spaces.

Output to the file is carried out by the classical C language methods. First the file pointer is declared:
FILE *fp;

and next the connection with a disk file is established by the function fopen(). Specifically the
instruction

fp = fopen('res-c(xt).txt™, *wt'");

creates the file named res-c(x,t).txt in the text mode. This means the numbers stored in this file will
be as string of digits (so directly human-readable). If for some reasons the creation fails the function
Tfopen() returns the empty (null) pointer. That is way the opening the file is performed by the
standard C language idiom

it ((fp = fopen(res-c(x,t).txt", "wt™)) == NULL) {

Electrochemistry: Advanced Modeling and Simulations, AGH, Krakéw.
Notes for the Project, part 2 (Comments on the source code and program)
Department of Solid State Chemistry
cout << "Error on opening the file. I'am quiting."";
return (1);

}

Actual saving to the files is performed in the special part of the IntegratorT class. It is done by
modification of the method SolutionOutput in this class. Implementation is in the file
IntegratorT.cpp. However one must be careful with the names of variables. Namely the identifier n
in this class means the total number of ODE equations that are integrated — not a number of grid
intervals (as we denote it in the main function). Thus we have to recalculate the number of grid
intervals form the total number of equations form the equality:

num_of eqgs = (r+1)-(num_of intervals + 1) + 1
hence
num_of _intervals = (hum_of egs—1)/(r+1) -1

In the method SoultionOutput the variable lastNode is used to denote number of intervals so
the above expression taks the form

lastNode = (n-1)/(r+1) - 1
where — we stress once again — N means the number of all equations (not grid number!).

Data for the simulations are embedded in the code so every time you change them the project must
be recompiled. These data are contained in two files: main.cpp and constants.h.

The constants.h file]

n —the number of grid intervals, so n+1 is the number of grid points,
r —the number of species (components),

R, T, &,, & —have their usual meaning.

‘In the main.cpp there are:‘

D[r] — the table for diffusion coefficients
cL[r], cR[r] —the tables for left and right bulk concentrations,

cM(r], cM[r] — the tables for initial concentrations in the membrane according to the formula,

cML[i] for 0< x<1d,
C;(x,0) =42 (cML[i]+cMR[i]) for x=2d, (0.1)
CMRi] for 2d <x <d.

kLf[r], kLb[r], kRf[r], kRb[r] — the tables for heterogeneous rate constants on the left and right
boundary (f for forward, b for backward),

z[r] — the table for components charges (valences). If we set z[i] =0, then the j-th species is not an

jon.

Electrochemistry: Advanced Modeling and Simulations, AGH, Krakéw.

Notes for the Project, part 2 (Comments on the source code and program)

Department of Solid State Chemistry

xend — the duration of process (defines the period of time over which the process is carried out)

dx —time interval for the results output

All values are consistently expressed in S units. Thus for example cL[0] =100 means 100 mol / m®,
hence itis 0.1M.

Grids generation

Generally we cannot rely on the uniform grid because in most simulated systems there are
greater concentration variations close to the boundaries or in the middle of the membrane. Three
functions — called hGridGen1, hGridGen2, hGridGen3 — are provided. The implementation code is in a
separate file grids.cpp included in the project. In each case the grid is produced in the standard unit
interval [0, 1]. Next, outside of these functions, this standard grid is mapped on the rescaled width

d of the membrane by simple operation: h[i]=d*h[i]. All grids are symmetric with respect to the

center of the membrane.

There are several options concerning grid generation (the same for all three functions) and the
prototype of each function is the same:

hGridGen(n, m, a, h[n], type)

where: n — the number of intervals, a — the fraction of the interval (near the boundaries or in the
middle) that contains m intervals of equal length (see Fig. 1 — for the case of denser grid near
boundaries, that is type=0, and Fig. 2 for the grid denser in the middle, that is type=1), m — the
number of equidistance intervals (at the boundaries or in the middle), type — which case of the grid: 0
—for denser at the boundaries, 1 — for denser in the center of a membrane.

a/m
x0=|0 J Xn=1
| |
1

d a

Fig. 1. Definitions of the parameters (a) and (m) in a grid type=0. Type 0 means denser
nodes distribution at the boundary region of the membrane.

In standard simulations involving transport across the membrane interfaces (boundaries) the grid

parameter a is of order 107 +10°. For n =100 a good choice of M is in the range 10+ 20.

a/m
Xo=0 ¢ Xn/2=1/2 Xp=1
| | | [| | | | | |
I T 1 | — 1
a d

Fig. 2. Definitions of the parameters (a) and (m) in a grid type=1. Type 1 means denser
nodes distribution in the middle of the membrane.

Initial conditions
As was mentioned earlier the possible initial conditions are piece-wise constant according to the
formula (1.1) for concentrations. Electric field is assumed to be zero at time t =0

Electrochemistry: Advanced Modeling and Simulations, AGH, Krakéw.
Notes for the Project, part 2 (Comments on the source code and program)
Department of Solid State Chemistry

E(x,00=0 = E°=0,E'=0,...,E"" =0, (0.2)

what is written in the source code as
for(k=0; k <= n+1; k++) y[I(r,k)] = 0.0;

(remember that in the program we count species from zero, so for concentrations i =0,...,r —1 and
for electric field i=r). This type of initial conditions will later have to be changed for
electrochemical impedance spectra (EIS) because obtaining them requires to simulate potential in
time from the perturbed steady state system. This steady state usually will not be described by the
step function concentration profiles (1.1) and (1.2). One of your task in the project will be to modify
this part so as any initial distribution of concentrations C,(X,0),...,C,(x,0) and electric field E(X,0)

will be possible.

	Input and output data
	Grids generation
	Initial conditions

