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A nonlinear heat/diffusion equationin 1 D

Consider the following nonlinear diffusion equation

8u

a ax( <>—], xe (0,1,
0(0,1) = d, (1), u(Lt) = d, (1),
0(x,0) = Uy (x),

(1)

where the diffusion coefficient D(U) is dependent on the concentration U. In general we could also

assume the it depends on the position X, that is D =D(u,X), but for the sake of simplicity we

restrict analysis to the former case. The function D(U) is strictly positive.

We can view the equation (1) as the balance of mass law

ou 8J

where the flux is given by J = —D(U)%

The space grid is presented on the picture below.
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For time discretization we use standard forward difference

u(x,t +k)— u(x,,k) u™t -y

k K

17™m

ou
E(Xi ) =
To obtain discretization of the term %(D(u)g—g) we make two steps:

—a—J(X. t )z_‘]iTlIZ_‘]iTllz
ox- h ’

and we try to deal with J7;,,. Observe that

m i+! l'Iim
‘J|+1/2 = D(u|+1/2) (X|+l/2’ ) D(u|+1/2)1T’
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(3)
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Now the problem with the above expressions is that the values of the approximate solution are
m

defined only in the main points of the mesh, namely only ...u",,u",u’, ...

are part of the discrete

solution, but discretized fluxes (3) contain terms D(u,,,), D(u";,,). One of the way to get rid of

these expression is the following approximation

D(u") +D(uf},)
> :

D(u") +D(u",)
5 .

D(“iTl/z) ~

(4)

D(ul,,) =

It is rather obvious that these types of approximation is correct because the mesh points are
equidistant. If non-uniform mesh is used we should apply weighted average instead of the simple
arithmetic average as in (4).

Combining all these approximations we have

m uinl _uim m uim_uiT
mel_m -D(uy,) lh +D(uy),) h .
' —=- , (5)
k h

and

K 2h?

U™ —u? _ (D(u7)+D(ul, )l ~ur) - (D(ufh) + D) ~ur)

, (6)

what finally gives the following discrete explicit scheme

m+1
u"t =

%r((D(Uim) + D))’ + (1_% r(D(u)+2D(u")+ D))y + % r(D",) + D™, 7

i+l

In short, we can write the above formula as

uim-¢—l =%r((Dim + D_m

i+l

)uirzl + (1_% r(DlTl + 2Din-I + D'm ))uim +%r(DiTl + Dim)uinil’

i+l

i=1...,n,

m m (8)
Uy = do(tm)a u = dl(tm)’
tm

=m-Kk.

where Dim:D(uim). Of course, when the diffusion coefficient D does not depend on

concentration we have Dim = D and the expression (8) takes the form

u™* =rDu’, + (1—2rD)u" + rDu/",,

i+1

which is known iteration for the 1D diffusion equation derived previously. Thus the scheme (8)
presents an explicit procedure for nonlinear diffusion equation.
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An Introduction to Reaction-Diffusion Equations

Reaction-diffusion equations arise as mathematical models in several areas of applications, for
example in models of chemical kinetics, biochemical systems, predator-prey systems in ecology. Both
numerical and mathematical analysis of reaction-diffusion equations have received a great deal of
attention in recent years. In the simplest models, these systems equations take the following
compact form

%:DAu+f(u), xeQCRY, t>0, (9)

where U ZQX[O, ) —> R*, DeR™ isan nxn matrix, and f (u) some differentiable function. In

an expanded form we can write (9) explicitly as a system for u(x,t) = (u,(x,t),...,u, (x,t))

%: >'D, Au;+ (U, U,),
i=1
(10)
ou, _ > D, AU+ f(Uy,....uy),
i=1

where X € Q c R¥, D=[D;;]

The combination of diffusion terms together with the nonlinear interaction terms, produce the
behavior that are not easily predictable from either mechanism alone. Thus, the term DijAuj acts as
if to dampen U, while the nonlinear function tends to drive it out of equilibrium by producing large

solutions, steep gradients, etc. This leads to the possibility of threshold phenomena which is one of
the interesting features of this class of equations

Fisher’s equation
Let us denote by U=U(X,t) the population density of some species. This means that the quantity

should be non-negative, U>0. If take into account the tendency of the population to spread out

over the area where it is possible to live, the Fickian flux term, D%, should be present in the
(@)

model. On the other hand we have to consider that the growth of a population faces the limited

resources which become more pronounced for greater densities but for small densities the

population may growth exponentially. This leads to the following terms: aU and —au?® so we get
the source term as

f(u)=au(A-u)=aAu-au’.
Combination of these two features, diffusion spread and growth model produces the equation

ou o°u
—=D—+cau(A-u). 11
o v au(A-u) (11)
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The source term f(U) = aU(A—U) acts thus as follows. For small U >0, f(u)= aAu, which gives
an exponential growth. But if U approaches A, so f(U)~0, and the growth slows down to zero.

Hence, we can interpret constant A> 0 the carrying capacity of the environment.

In mathematical ecology, this model of population growth is called Fisher’s equation. Usually this
equation is studied in conjunction with a Neumann-type boundary condition, that is

ou ou
“(a,t)=0, —(b,t) =0,
ax( ) ax( )
where Q=(a, b) is the domain in which the population lives. Such boundary condition can be

interpreted as no flux through boundary, i.e. the system is closed.

Since we are interested in the qualitative behavior of this model we can introduce a new variables
(rescaling)

X—a

Ux,D=u(xt/A X=—©, T=t/t,
b—a
and re-write equation (11) as
ou =ou  _
—_:D—+alT1—U, 12
= = 1-0) (12)

—_ 2
where D=D (bzca) , :Oi—cA. In particular, if we take the time scaling factor t, = D-(b—a)?, then

D =1 and we can write

_ 2
ou :%er(l—a), Xe(0,1), T>0. (13)
X

To ease the burden of notation we henceforth drop the overbars in the notation and consider the
following model problem

2
%‘t‘:%mua—u), xe(0,1), t>0,
X
Z_i(o,t) =0, Z_z(l,t) =0, (14)

U(x,0) = Uy (x),

where U, :[0,1] & R is the initial population density. We will be mainly interested in the initial

density that is within the carrying capacity of the environment, that is
0<u,(x) <1, (15)

forall x ][0, 1].
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A finite difference scheme for Fisher’s equation
Let U" denote an approximation of U(X;,t,), where U=U(X,t) is the solution to the problem (14).
The explicit finite difference scheme can be written as follows

u™ =ru" +@-2r)u" +ru”, +ku"@-u"), i=1,...,n, (16)

i+1
where r =k /h?, h—space step, k — time step.
The scheme is initialized by
u’ =uy(x), i=0,...,n+1. (17)

The boundary conditions of (14) can be tackled in two ways (see Notes for Lab02): ghost point
method or three-points one sided method. Here we adopt the ghost point method. Thus we
introduce the auxiliary (“ghost”) points X ,=X,—h=-h and X _,=X_, +h=1+h. Since

n+1
4(0,t) =2 (Lt) =0, we have discretization on boundaries
m m m m
uf u

Yoo ogng thez= g (18)
h h

what gives U"; =u,", u;,, =U,'. Combining these equalities with (16) for i =0 and i =n+1, we get
u™t = (@-2r)ug +2ru + kuy' (L-ug"),
umt=2ru™ +(@1-2ru”, +ku™ (1-u)), (19)

n+1

m=0,1,...
The finite difference scheme is now fully specified by (16), (17) and (19).

Some general properties of Fisher’s equation

In order to test the computations based on the above explicit scheme and also to get some deeper
insight into the properties of the solution of the problem (14) we will state below two important
facts about the solution for any time t>0. One is an invariance property and second is the
convergence toward equilibrium.

The invariance property states that if the values of the function stay in some special region (in 1D this
is usually just an interval) at some point of time (usually at t =0, then it will also have values in that
region for any time later on. We call this region an invariant region (for the system of equations it
may have much more complicated geometry than in 1D). Specifically we have the following:

Suppose that U:[0,1]x[0,00) — R is smooth solution of the problem (14). If the initial

condition U, satisfies the condition
0<e<u,(x)<1l+e, (20)

then the solution U also satisfies it for any time t >0, that is the following holds
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O<e<u(xt)<l+e, (21)
forany xe[0,1],t>0.

The steady (or stationary) state solution is obtained when there is no dependency on time, hence

%“ = 0. This leads the problem (14) to the following equation

2

372+au(1—u) =0,
22
Woy=LMm-o ()
dx dx '

which have an obvious constant solution U, (X) =1. It turns out that the time dependent solution of

the problem (14) tends to this stationary solution as t — 0. Formally we have
Let u:[0,1]x[0,0) & R be a solution of (14) with initial data U, satisfying
0<e<gu,(x)<1l+e,

forall x €[0,1]. Then u approaches the steady state solution U (X) =1 in the following

sense

1
!imj(u(x,t)—us(x))zdx =0,

X (23)
lim [(Z(x,1)) dx=0.

0

In practice we can conclude that the time dependent solution approaches the steady state solution
point-wise

u(x,t) > u,(x)=1 as t —» o, (24)
for any fixed x €[0,1].

Stability condition for the explicit scheme

As we remember, the stability condition for the explicit scheme for linear diffusion equation is
r<1/2, where r=D-(k/h?). It turns out that for the explicit scheme (16) for the reaction-
diffusion problem (14) the similar stability condition must be met if the scheme is to produce correct
results for long times. It can be proved that this condition now reads (assuming the diffusion
coefficient D =1)

h2

k< ——,
2+h?

(25)

which is slightly more restrictive than the corresponding condition for linear diffusion, k < h?/2.
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