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Difference method for second order nonlinear two-point boundary problem
on the interval

Let us consider the following Dirichlet boundary value condition problem on an interval

{u”: f(x,u,u"),

(1)
u(a)=d,, u(b)=d,

where the function f = f(X,u,u’) is given. The solution to (1) is any function U:[a, b] > R twice
differentiable which satisfies identity U"(X)= f(X,u(x),u’(x)) for all xe[a, b] and boundary
conditions, i.e. u(a)=d,, u(b) =d,. We also assume that the function f = f(X) has properties

that guarantee the unique solvability of the problem (1).*

To solve the stated problem by the finite difference method we follow the standard procedure, i.e.
we introduce the grid a=X, <X <...<X <X, =D of N+2 points on the interval [a, b] and

replace derivative with proper finite differences. As we deal here with the Dirichlet boundary
conditions, the discretization on the boundary points will be straight forward. Thus, let us write the

equation at the internal mesh point X=X, (so i =1,...,n)
u”(x;) = f(x,u(x),u'(x)),
and substitute U"(x;), u’(x;) with second order approximations

U, — 2ui +Uiy

£ _ f(xﬂ u, %} @<i<n). (2)

Taking also into account the boundary conditions U, =d,, U, =0, we arrive at the following

nonlinear system of equations for unknowns (ul, . un) eR"

—2U1+u2:h2f(xly uly uzz_hdoj_do (|:1),

2 Uiy Uiy i
U, —2u;+U;,; =h f(xi' Ui’Tj (2<i<n-1), (3)
un_l—2un=h2f(xn,un, dl;s”‘lj—dl (i=n)
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! For example: (i) f, e W:[O,l]xR2 — R are continuous; (ii) %>O in whole domain; (ii) ;7 is lower
and upper bounded. For instance the function f(X,u,u’)=Xu®+u+sin(xu’) meets these criteria. The

equation reads: U" = Xu® +Uu +sin(xu’).



To obtain the standard form of a nonlinear system of equations we arrange all terms (3) on one side
and equalize it zero

2u1—u2+h2f(x1, ul,@j—dozo (i=1),
2h
~U ; +2U, — U, +h*f (Xi’ Ui, %jzo (2<i<n-1), (4)
2 dl_un—l :
—-u,,+2u, +h°f xn,un,T —-d, =0 (i=n).

The resulting system (4) can be solved numerically — basically — by two methods: (i) simple iterations;
(ii) Newton-Raphson multidimensional method. In what follows we present the second method.

The Newton-Raphson method
The Newton-Raphson method for solving an equation

f(x)=0, (5)
is based upon the convergence of the sequence

X; :x.—f(xj) (j=012,..) (6)
TS 1,2,..).

This method may be used for differentiable functions and has a simple geometric interpretation: a

new value X is obtained as the intersection of the tangent line to the graph of f at the point

X=X, with the OX axis. The process is repeated until a sufficient accuracy is reached.

To start the iterative process (6) we have to chose “the initial guess” X,. The method will converge
to solution, provided that X, is close enough to the unknown zero X, and f'(X,)# 0. The condition

f'(x,) =0 is fairly obvious as it is necessary to have f'#0 in the vicinity of X, if we want the

f(x))

expression )
]

to be correctly defined. On the other hand there are many functions for which the

process (6) converges virtually from every starting point. For example, if we seek the solution to the
equation




and the sequence (X;)}_, is convergent to \/E for any starting point X, > 0!

The one-dimensional Newton method may be easily extended to multi-dimensional case, i.e. to the
system of nonlinear equations

f,(x,...,x,)=0,
: (7)
f. (X x )=0,

qreeer Ay

f :R™ >R are given. This may be

where differentiable functions (of several variables) f,,..., f_

written in a compact from as the solution of the following vector equation

F(x)=0, (8)

where X=(X,...,X,)€R" and F(X)=(f/(x),..., f (X)) eR", thus F:R™ >R". In the
multidimensional case, however, we cannot simply divide by F'(Xj) as in the formula (6) because
now the derivative F'(X) is a linear operator, F'(X) € L(R™,R™), which in the standard canonical

basis of R™ is represented by the Jacobi matrix

A A )]
ox x) ... ox (x)
DF(x) = : : : (9)
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In this case the formula for the iteration step will involve the inverse of the Jacobi matrix DF(X)

instead division by f'(X), thus is given by
X0 =x -[DF(x") ] F(x?)  (j=012..). (10)

It seems that each step involves the inversion of the matrix DF(X"), but in fact this can be

rewritten as
DF (x)(x® —xP) =—F(x®¥)  (j=012,..), (11)

what in fact is a system of linear equations of the form AZ =b, where matrix A= DF(X") and the

column b =—F(X“)). It means that at each step we have to solve the following linear system of

equations, and next change the matrix A and column b,

DF (x)ox! =-F(xV),
XU =x0 +5xI, (12)
for j=0,12,...



Thus the Newton-Raphson method to be employed operates as follows. Given an initial guess X©
for the solution of (7) (or (8)), the system of linear equations DF (X®)8x° = —F(X®) is solved. A
new approximation to the solution is obtained by adding the solution vector to the previous
approximation, hence X® =X® +6Xx°. The matrix A=DF(X) and column b=-F(x) are
reevaluated using the new solution vector X® i.e. we insert there X= X", and the entire process is
repeated until convergence is obtained. In practice, the phrase “until convergence is obtained”

means the we perform several iterations and check the consecutive updates SX!. If they are small
enough we stop iterations.

The Newton-Raphson method requires the knowledge of the Jacobi matrix what is equivalent to
knowledge of all the partial derivatives for each equation. If the system (7) is given in the analytical
from, e.g.

2X + X5 +4x7 -3=0,
XX +2X, —7InX, =0,
2%, —3X,C0S X, + X, =0,

then the Jacobi matrix can be easily expressed in the analytical form as well, here

4x, 2X, 8X
DF (X, X,,X;) = X, 2 X -+,

2+43x,sinx, -3cosx,  5X;

3

and the method runs smoothly. On the other hand, if for some reasons, the analytical form is not
possible, or it is, but is too complicated, or too large for efficient use of the analytical differentiation,
we can resort to the finite differences to approximate the Jacobi matrix.

For the case of the boundary value problem (1), which leads to the nonlinear system (4), the
analytical form of the Jacobi matrix DF(U) (remember, that now the unknowns are denoted by
Ug,...,U, and M=n) is available as long as the function f(X,u,u’) is provided in the analytical

form. The computation of the Jacobi matrix DF (U) gives
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As we can see the matrix is tridiagonal, so solving the linear system (12), which in the current
notation reads



DF (u)su’ =—F u®),
ui™ =u® +sul, (13)
for j=0,12,...

can be quickly carried out by the reduced Gaussian elimination. Here components of F(U) are the

functions that on the left-hand side of the system (4).
To start the iterations (13) we have to select some initial guess U@ = (U{?,...,u{”). It seems that

the best choice here is the linear interpolation between the boundary values u(a) =d,, u(b) =d,

i .
u® =d d,—d,))—— 1<i<n). 14
O =dy+(d,~d)—  (<i<n) (19
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