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Finite difference method for Dirichlet boundary problem with variable
coefficients

Let us consider the following boundary value problem

{_(g(x)u')ury(x)u =f(x), xe(ab), (1)

u(@)=d,, u(b)=d,

where d,, d, R are given constants, functions A, y, f:[a,b] >R are also given and
continuous (& is moreover continuously differentiable). The task is to find a function U:[a, b] > R
twice differentiable which satisfies the equation and attains prescribed values do, d, at the

boundary.

The problem (1) may be viewed as a one-dimensional stationary case of some process with the flux
given by J =—A(X)VU, which in one dimension is just J =—A(X)u’.

For the approximation we introduce on the interval [a, b] the main grid {x }" such that
X, =a+i/h, 1=01...,n+1, (2)

where X, =D, so h=(b—a)/(n+1). This is of course a uniform grid with X,,, =X, +h. To carry
out the proper discretization of the term —(A(X)u’)’ it is also convenient to introduce the additional

midpoints X;.;,, = (% + X

)/ 2 of the intervals [X, X ,] for 1=0,1...,n. This arrangement is

presented on the picture below:
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Let us denote the approximation of the unknown function U=U(X) at X=X, by U., i.e. U,

= U(X).

Now using the centered difference for a derivative —(A(X)u’)’|,_, we can write

A(X U (Xis1y0) = A1 )U (X y)0)

for i=12,...,n.
h

(A)U'(x)) =
so the equation from the problem (1) is

_ﬂ’(xi+1/2)u’(xi+l/2)_ﬂ'(xi—llz)u’(xi—llz) +]/(X-)U- ~ f(X) fori=12.....n.
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Derivatives U'(X;,;,,) and U'(X,_,,,) are discretized also by the centered differences

Ui —U; u —u_
U(Kuarz) ==t U (Kyyp) ¥ =



Combining above expression we get

u. , —U u —u.
A(Xi,172) th b= A(Xiyyp)

h

+y(x)u; = f(x) fori=12,...,n.

what can be written as

AUy + (Ayp + A + h27i)ui — Aol = h*f, fori=12...,n, (3)

where notation A, = A(X4,,), 7 =7(X), and f, = f(X;) has been used.

Taking into account the boundary condition U, =d, and U, = d; we arrive finally at the following

tridiagonal system of N —1 equations
(Ayyy + a2 +h271)ul_/13/2u2 =h? f, + 2,0, i=1

~AyUig + Ay + A, + hz?’i)“i = Alig = h*f;, (2<i<n-1), (4)

~AogiUno + (A gpp + Aran + hz?’n—l)un-l =h? foa+tAa.0, (i=n-1),
for unknown values U = (u,,...,U, ;) € R,

Remarks on the existence of solution to the 1D Dirichlet boundary problem
and properties of the tridiagonal matrix

The final linear system (4), which is expected to approximate the solution of the original problem (1),
has N—1 unknowns. These correspond to the internal nodes X,..., X, as the values at X, and X,

are directly known due to the nature of Dirichlet boundary conditions. In other types of boundary
conditions, which employ values of the derivatives of the unknown function on the boundary this
must be handled separately. But, usually this will affect only the form of the first and last equations
of the linear system.

The tridiagonal system is simple and easy to solve by the reduced version of the Gaussian
elimination, but still there is a valid question of the existence and uniqueness to this system. Even
tridiagonal system with nonzero elements on diagonals may be singular as is evidenced by the

example
1 1.0 0 Oy | [h]
1110 0}ju, b,
AU=(0 1 1 1 O|lu,|=]|hy],
0 01 1 1yu, b,
10 0 0 1 1]jug| [h]

in which the matrix is not invertible (det A=0).



The question of the solvability of the tridiagonal system (4) is related to the same question for the
original problem for ODE (1) — the issue which we have not addressed so far: does the boundary
value problem (1) have unique solution for any given functions A(X), y(X), f(X) and values

2
d,, d, e R"
The answer is no, even for “nice” functions A, 7. Here is an example of non-existence.

Example. Consider the problem on the interval [0, 27] with A(X)=-1, ¥(x)=-1, f(X)=0, and
0, =0, 9, =1. The equation of the problem (1) reads now as —(—U')’—u =0, so the boundary

problem to solve is

u"+u=0,
{ (5)
u(0)=0, u(2r)=1.

The general solution to U"+U=0 is u(x)=C,;sinx+C,CoSX. Inserting the left boundary
condition we have U(0)=0=C,sin0+C,cos0=C,, thus u(x) =C,sinX. The value at the right
boundary requires, however, U(27)=1 but U(27)=C;sin2zx =C,-0=0, thus we have clear

contradiction. This proves that the problem (5) does not admit any solution.

On the other hand the discretized form of the problem (5) has the matrix form

2-h* 1 o ... 0 u, 0
1 —2-h 1 : u, 0
0 1 —=2-h> 1 0 Cl=| ot (6)
: : 0

0 0 1 -2-h*]lu, | |-h*]

and it can be show that the matrix is non-singular is for every h >0 and size. This means that the
approximation to the problem (5), which has no solution, will produce some approximate solution.
This example shows that we must be cautious with numerical methods.

Coming back to the general problem (1) we state here the conditions for the functions A, ¥ which

guarantee the existence and uniqueness to this problem:

7(X)>0 and A(x)>m>0 for xe[a, b], (7)

where m >0 is some constant. As we can see no constraint is imposed on the function f (save for

the continuity requirement on the interval [a, b]).

Diagonal dominant matrices

One way to check whether a matrix is nonsingular is to see if its elements on the main diagonal
dominate the off-diagonal ones in each row. In the case of tridiagonal matrix this condition reads as
follows: a tridiagonal matrix



d, ¢, 0 O 0]
a, d, c, 0 0
0 d c :
aS 3 3 , (8)
0 O 0
a'n—l dn—l Cn—l
0 0 .. 0 a d,]
is said to be diagonal dominant if
ld, [>]c, |,

9
|d, [>|b |+]|c |, fori=2,...,n. ©)

It can be shown that when the tridiagonal matrix is diagonal dominant and di #0 for i=1,...,n,

then the matrix is nonsingular and the standard algorithm for solving the tridiagonal system of linear
equations (presented in the lab 1 notes) finds the solution (no division by zero will be encountered).

We can check that conditions (7), which guarantee the solvability of the differential problem (1), will

also guarantee the solvability of the discretized system (4). It is because now 4, >0, 7, =20 so
2
dy =y, + Ay, +07, >0, € =45,
2 -
O =Aap +Aan +N7 >0, 8 =4y, 6 =4y, 122,
and now we see that conditions (9) are obviously met.

Nuemann boundary conditions

In some application the physical model requires that the values of the gradient at the boundary — or
its part — must be set. Generally, if u describes density of some quantity, this means that some form
of flux through the boundary is controlled. Let us analyze the following problem

{—u”: f(x), xe(a,b),

, (10)
u'(a) =g, u(b) =d,

where f:[a, b] >R is given function, and g,, d, € R given constants. This boundary value

problem is called mixed (Nuemann at the left, Dirichlet at the right part of the boundary).’

! We do not consider “full” Neumann boundary condition, say u'(a) =0 U'(b) = {;, because there are troubles with

—-u" = f(x),
u’'(0)=0,u'@@ =0,

obviously lacks uniqueness, because if U is some solution to this problem, then U + C, where C € R is any constant, is

uniqueness. For example, the problem

also a solution.



Discretization on the uniform grid {X}, for the internal nodes X,...,X,, and for the last node
X, =D is the same as in the Dirichlet boundary conditions. But for the first node X, =a it must be
different, as now we are not given the value of the function but its first derivative U'(X,) =0, so

Uy = U(X,) is unknown.

v

Xo X X, Xoz2  Xex X,

The first choice could be

u,—u
L L
Uy = N =Yo»

which is a valid approximation of the first derivative. But the problem is that this approximation is of
the first order in h, which means

U, —Ug —g
0

- <const-h, (11)

and centered finite difference for the second derivative U/ is of second order

u., —2u +Uu
w—ui’ < const - h?. (12)

By using both schemes (11) and (12) in the same set of discretized equations we would mixed up two
orders of accuracy what would effectively produce the method of the lower order. Thus we would
lose any advantage that might be expected from using the second order approximation (12). To

remedy this disparity we look for a finite difference for u(; that is of second order. Basically two

approaches can be adopted: (i) ghost point method (ii) three points one sided finite difference.

Ghost point method. Let us introduce the auxiliary point X ; = X, — h, which lies beyond the domain
of the function U I[XO, Xn] — R, and introduce an auxiliary unknown U_,. It may look suspicious as
the function u is not defined at X=a—Nh, but nevertheless this procedure leads to some final
expression that depends only on the values belonging the interval [a, b]. Now we employ the
centered difference at X=X, so

p_ U Uy

UOZT:gO' (13)

To get rid of U_; we will also discretize the equation (10) at the point X =X, thus

_%z f,. (14)



Eliminating U_, from (13) and (14) gives the following expression

U, —U, :%hzfo—hgo. (15)

Three-points one sided finite difference. A derivative U’ at any point X can also be approximated
with second order error by values which are on one side of this point. Namely we have

=3u(x)+4u(x+h)—u(x+2h)
2h

u'(x) = +0(h?). (16)

Applying this formula at the point X = X, and using the boundary condition U'(X,) = g, we get the

following expression

3u, —4u, +u, =-2hg,. (17)
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