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Gaussian elimination for tridiagonal linear systems
The general linear system of N equations can be written in a matrix form as follows

a; 4, a; a, || % b

aZl a'22 a23 a2n X2 b2

a‘31 a32 a33 X3 — b3
8y 8, 8y o .o oAn [ %] [b]

(1)

But many applications lead to the linear systems which have the so called banded structure. This

means that nonzero elements in the left hand side of (1) appear only around the main diagonal. Such

condition may be expresses as follows

there exist M << N, such that a; =0 for [i—j|>m.

The above condition means that nonzero elements reside only on the band of the 2m+1 width

around the main diagonal. For such systems it is not efficient to employ full version of the Gaussian

eliminations as most operations would simply be carried out on the zero elements.

Now we will concentrate on the banded system which have only three diagonals which may be

occupied by nonzero entries. Such system arises in the numerical methods for solving boundary

problem for one dimensional Poisson’s equation
-u" = f(x),
or more generally second order linear equation with variable coefficients
p(x)u” +g(x)u’+r(x)u = f(x),
for Xe | R, where | denotes some interval.

The tridiagonal system can be written in a matrix form as

d, ¢, 0 0 o x| [b]
a d, ¢ 0 0l % b,
O a2 3 C3 R . X3 — 3
o o0 . . . 0f : :
: . . an72 dn,]_ Cn,]_ anl bn—l
_O O 0 anfl n__Xn_ L n |

(2)

(3)

(4)

For the description of Gaussian elimination we do not need the column of unknowns, so for the sake

of simplicity we use the following description of (4)
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d, ¢, 0 0O 0] b ]
a d, c 0 0| b,
0 d c b
EH o3 3 3 (5)
o 0 . 0
: . . a‘n—2 dn—l Cn—l bn—l
0 0 ... 0 a, d, |b

The elimination is now a process which converts this extended matrix into upper triangular one, what
means that below the main diagonal are only zeroes. Of course, this process is restricted to such
operations that leave the solution of the system (4) unchanged. There are two basic operations that
satisfy this requirement and are enough to bring our system to the triangular form: (i) adding any
row multiplied by a number to another row; (ii) swapping two rows.

Gaussian elimination method for the tridiagonal system (5) has the following basic structure

R, —unchanged,
: &
R, =R,——R,
d,
. a
R, =R, ——2 R,, (6)
d,
: a,
R, =R - d” R,
n-1
where Rl, e Rn are the rows of the extended matrix (5). But we should also take into account the
fact that rows R,,..., R, contain only two or three nonzero entries so the subtraction of rows in (6)

basically is reduced to two values:

d,, ¢, —unchnaged

dz :dz _%Cl’ bz :bz _ibﬂ
1

d,
a a
d,=d,—=2c¢,, b,=b,——2h,,
3 3 d2 2 3 3 d2 2
dn = dn Pt Cots bn = bn - Pt bn—l'
dn—l dn—l

Using the pseudo C/C++ code this fragment reads as (remember, however, that tables in C/C++ have
indices that start naturally rather from zero than from one thus n— elements tables are indexed as

dy.d,....d, ;)

double a[n], d[n], cIlnl],
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for (i=1; i < n; i++) {
d[i] = d[i] - (ali-1]1/d[i-11)*c[i-11;
bl[i] = bl[i] - (al[i-11/d[i-11)*b[i-171;

Once we have arrived at the upper triangle form we can now easily compute the solutions by the
simple backwards substitution. But for the case at hand our upper triangle system is not a full one

because in each row there are only two nonzero elements d,, C; (except for the last row where
there is only dn) so we can use the restricted form of the general procedure which no will require

only one operation per one unknown variable. Specifically, the system looks like below

d1X1 +C X, = bl’

d,X, +C,%, =h,,

d;X; +C,X, =Dy, -
dn—lxn—l +CaX, = bn—l’

ann = bﬂ’

and solutions are obtained by the following relations

b,
X, =-",
d,
(8)
L —C

i Xi+1

x =——%L - j=n-1n-2,..1
d

In the pseudo C/C++ code (again remember that the indices run from 0 to n-1) we have

x[n-1] = b[n-1]1/d[n-1];
for (i=n-2; i20; i--) x[i] = (b[i] - cl[il*x[i+1l])/d[i];

Poisson’s equation

Let QcR" be an open and bounded set. We are looking for a continuous function U Q>R
twice differentiable in €2 satisfying the conditions

Au=f in Q,
{

u=g on oQ.

where f:QQ > R, g:0Q — R are given continuous functions. The second relation in (9), i.e.

u(x) = g(x) for x € 0Q) is the boundary condition which is called the Dirichlet boundary condition.

In a special case when f =0 we have the Laplace equation AU =0 and the Dirichlet problem for

Laplace equation is now
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{Au =0 in Q,
(10)

u=g on 0Q.

These equations appear frequently in physical sciences. For example, solutions to (9) correspond to
steady state of time evolutions such as heat flow, matter flow (diffusion) or wave motion. The
function f represents heat sources in case of the thermal phenomena.

Both these equation arise also in electrodynamics and gravitation theory, where electric, magnetic or
gravitation fields are given as the gradient of the potential function. For example, suppose that E is

the electric field and p is the distribution of charge in some region 2 R? e

E: Q>R
p: Q- R,

where the charge distribution p is given and electric field E is to be determined. The relation

between both quantity is the first Maxwell equation (known as the Gauss law)

. 1
divE =— p, (11)
&y
where &, is the vacuum permittivity (the electric constant), in Sl units ¢, =8.854-10™* C*/(Nxm®). In

the case of static distribution of charge (the charge density does not depend on time, p = p(X)) the

electric field is conservative and can be expressed by the gradient of the potential function y(X)

OX ! OXy ! OXg

E:_Vl//:_(a_y’ v 6_9"). (12)

When we substitute (12) into (11) we get the Poisson equation

Al//=—ip in Q, (13)
o

for the electric potential. In particular in the region where no charge is present the potential satisfies
the Laplace equation Ay =0.

We begin our study of numerical methods for the Poisson equation with the one dimensional case
Q=(a, b)c R, u:[a, b]— R. In this case the boundary consists just of two points 6Q ={a, b}
so the boundary condition is simply expressed by two numbers g,, g, € R. Thus our model problem
reads
_@: f(x) xe(a,b),
dx
u(@) =g, u()=g,.

(14)
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In this problem given are: continuous function f :[a,b] — R, boundary values ¢,,0, € R. We are
looking for the continuous function u:[a, b] > R on the closed interval [a, b] which is twice

differentiable in the open interval (a,b). Because the assumption is that f € C([a, b]), so we can

write that u € C([a, b]) nC?((a, b)).

Finite difference approximation

n+l

We introduce on the interval [a, b] the uniform grid of points {X,},"; such that X, , — X, =h. Thus

the relation between h>0 and neN is following: h =ﬁ. The approximation to the solution of

(14) is a sequence {U,,U;,...,U,,U .} which is meant to satisfy U(X)=U;, where u is the true

d2u(x)

solution. The second derivative —g— can be approximated by the three-points scheme with equal

distances

gztzj (X) ~ u(x+h)—2u(2x)+u(x—h).
X h

(15)

In our notation U, = U(X;), U, , =U(X.,,) =u(x +h), u._, =u(x ;) =u(x —h), sothe discretized
form of the problem (14)

u.,, —2u. +Uu. i
%:f(xi), I=1...n, (16)

U, = do’ U, = dl'

Let us rewrite this system as

2u, —u, =h*f (x)+d,, i=1,
_ui—l +2ui _ui+1 = hz f (Xi)’ I = 2!'-'! n_1! (17)
2u, —u , =h’f(x)+d, i=n

For better visualization let us present this system in an expanded matrix form

2 -1 0 0 o[ u, ] [h?f,+d, ]

-1 2 -1 0 0 u, h?f,

0 -1 2 -1 0 u, h?f, 8)
0 0 -1 2 -1u,, h*f, .

0 0 0 -1 2] u, | [h*f +d,

which is tridiagonal — see (5). It has even simpler form than the general tridiagonal system (4),
because the values on each diagonal are the same: -1 for below or above, and 2 for the main

diagonal.

Example. Let us consider the following problem
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d?u

_d_zz x(3+x)e*, xe(0,1),
X

u(0)=0,u()=0.
One can easily check that the exact solution is given by

(x) = x(L—x)e”.

u exact

When we run the program —u”’(x)=f(x), Dirichlet boundary.cpp with the N = 20 results are following

BN Ch\Users\szyszkin\Documents\AGH\Advanced material modeling and simulationsh-u" =fix], Dirichlet ...

Interval:

a (left> = @

h (right)> = 1

n_numixl>=0.034?78555; uw_exactixl)>=0.0429354
n_numix2>=0.07723183; uv_exacti{x2>=0.0774654
n_numix3>=0.147207; uvu_exactix3I>=0.148134
n_numix4d>=0.195134; vw_exactixd>=0.195424
w_numix5>=0.2404086; u_exacti{x5>=A.240755
u_numixbr=A.283869; u_exact{xbr=0_.28347
w_numix7?r=0.322322; uvu_exactix7>=A.322838
u_numSxB>=A.357555; u_exact{xB>=0_.358038
n_numix?>=0.387645; u_exacti{x?>=0.388157

n_numix18>=0.411649; v_exacti{x1B>=0.41218
n_numix11>=0_.428439; uvw_exactixl11>=-0_428%98
n_numix12>=0.436769; u_exactixl2»=0_4373609
n_numix13>=0.43526; uvu_exactix13>=A.435786

u_numixi4>=0.422389;
w_numix15>=0.326479;
u_numix16>=0.355684;
w_numix17>=0_297975;
u_numix18>=0.221124;
w_numix1?>=0.1226%91;

u_exacti{x14>=0.422888
w_exactix15>=A_376738
u_exact{xlb>=A.356087
w_exactix1?>=0_2728305%
u_exact{x18>=A.221364
w_exactix1?>=A_122821

Press any key to continue . . .

This figure shows bout the numerical and exact solution of the boundary problem. Values for X =0
and X=1 are not included in the output. The total number of grid points is 21, the number of
internal points is 19.
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