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Outline

I Numerical experiments for verifying properties of Finite Elements
Method.

I Basic reference: A. Quarteroni, A. Valli, Numerical Approximation of
Partial Differential Equations, Springer-Verlag, Heidelberg, 1996,
Chapters 3,5.
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A First Numerical Example: a 1D heat problem

www1.mate.polimi.it/~calnum

Consider a thin rod of length L whose temperature at x = 0 is fixed to t0 while the other
endpoint x = L is thermally isolated. Assume that the rod has a cross-section with
constant area equal to A and that the perimeter of A is p.
The temperature u of the rod at a generic point x ∈ (0, L) is governed by the following
boundary value problem with mixed Dirichlet-Neumann conditions











−µAu′′ + σpu = 0 x ∈ (0, L),

u(0) = u0, u′(L) = 0,

(1)

where µ denotes the thermal conductivity and σ is the convective transfer coefficient.
The exact solution of the problem is the (smooth) function

u(x) = u0

cosh[m(L − x)]

cosh(mL)
, where =

√

σp/µA.

We solve the problem by using linear, quadratic and cubic finite elements on a grid with
uniform size. Assume σp = 4, µA = 1, T0 = 10, L = 1, so that m = 2.
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Solution with Fem1d
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I Condition number for different h and p

h = 0.1 h = 0.05 h = 0.025

P1 67.35553 259.0683 1013.6147

P2 344.8292 1350.8582 5342.138

P3 1105.5703 4358.8914 17301.0288

I Iterations required by PCG with different preconditioners: P1

h = 0.1 h = 0.05 h = 0.025

NoPreconditioner 10 20 40

Tridiag 1 1 1

ILU(0) 1 1 1
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I Iterations required by PCG with different preconditioners: P2

h = 0.1 h = 0.05 h = 0.025

NoPreconditioner 20 40 84

Tridiag 11 21 37

ILU(0) 1 1 1

I Iterations required by PCG with different preconditioners: P3

h = 0.1 h = 0.05 h = 0.025

NoPreconditioner 32 70 145

Tridiag 21 49 111

ILU(0) 1 1 1
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More on preconditioning

Let us consider a rod (0 ≤ x ≤ 1) whose vertical displacement under a vertical force
f(x) is denoted by u(x). After some simplifications, we obtain the equation:

−E
d2u

dx2
+ S

d4u

dx4
= f 0 < x < 1

where E and S depend on the physical ad geometrical features of the rod. For a rod
fixed at the endpoints, we have:

u = 0,
du

dx
= 0 for x = 0, 1.

The model is obtained by some simplifications and the (linear) superimpositions of a
traction term (second derivatives) and a bending one (fourth derivative).
For numerical purposes, we follow a finite different approach with uniform mesh size
∆x = h:

E
1

h2
(−ui+1 + 2ui − ui−1) + S

1

h4
(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2) = fi, (2)

where uj is the displacement in xj = jh, fj stands for f(xj).
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Boundary conditions can be approximated by the following relations::

u0 = u(0) = 0, u1 = u(h) = 0, un−1 = u((n − 1)h) = 0, un = u(nh) = u(1) = 0.

We obtain a linear system for the displacement in the nodes xj , 2 ≤ j ≤ n − 2

(n = 1/h):

Au = f , where A =
1

h2
T +

1

h4
F,

T =

































2 −1 0 . . . 0 0 0

−1 2 −1 0 . . . 0 0

0 −1 2 −1 . . . 0 0

. . .
. . .

. . .
. . . . . . 0 0

0 0 . . . −1 2 −1 0

0 0 . . . 0 −1 2 −1

0 0 . . . 0 0 −1 2

































F =

































6 −4 1 . . . 0 0 0

−4 6 −4 1 . . . 0 0

1 −4 6 −4 1 . . . 0

. . .
. . .

. . .
. . . . . . . . . 0

0 . . . 1 −4 6 −4 1

0 0 . . . 1 −4 6 −4

0 0 . . . 0 1 −4 6
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It is easily realized that A is symmetric and positive definite, so we can solve the system
with the conjugate gradient method.

Matlab instructions:
>> n=50; h=1/n;

>> dim=n-3;

>> T=2*eye(dim)-diag(ones(dim-1,1),1)

-diag(ones(dim-1,1),-1);

>> F=6*eye(dim)-4*diag(ones(dim-1,1),1)

-4*diag(ones(dim-1,1),-1)

+diag(ones(dim-2,1),2)+

diag(ones(dim-2,1),-2);

>> A=1/h^2*T+1/h^4*F;

>> f=-ones(dim,1);

>> spy(A)

>> toll=1.e-10; nmax=1000;

>> u1=pcg(A,f,toll,nmax);

pcg converged at iteration 41 to a

solution with relative residual 5.3e-11
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Now, try to reduce the number of iterations with a preconditioner.
A good preconditioner P :

I is a good image of A, for accelerating the convergence (P−1A ≈ I)

I is easy to solve, since it is solved at each iteration.

We start with the diagonal matrix extracted from A.

>> P=diag(diag(A));

>> u2=pcg(A,f,toll,nmax,P);

pcg converged at iteration 40

to a solution with relative residual 9.9e-11

Low cost preconditioner ⇒ Little improvements
Let us consider another preconditioner.
If we neglect bending forces (i.e. we consider only the matrix T ), we are actually
modeling a vibrating string. It is a “simplified model” however yielding a tridiagonal
preconditioner.
In other words, we consider a simplified model as preconditioner for the complete one
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This makes sense, since the preconditioner T is tridiagonal and effective algorithms are
available for solving triadiagonal matrices (e.g. Thomas method).

>> P=1/h^2*T;

>> u3=pcg(A,f,toll,nmax,P);

pcg converged at iteration 24 to

a solution with relative residual 2.1e-11

The effectiveness of the preconditioner is evident and can be explained by checking the
condition number K(A) of the matrix.

>> format long e

>> cond(A)

ans = 1.795709678066970e+05

>> P=diag(diag(A));

>> cond(inv(P)*A)

ans = 1.795709678064624e+05

>> P=1/h^2*T;

>> cond(inv(P)*A)

ans = 5.406024737538536e+02
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An advection-diffusion problem

Consider the following problem:

−u′′ + 500u′ = 0 x ∈ (0, 1)

u(0) = 0; u(1) = 1.

(3)

The red term represents the diffusion, the blue one the convection.
The exact solution of this problem is:

u(x) =
e500x − 1

e500 − 1
. (4)

If we try to solve this problem with a pure Galerkin Finite Element approach,
e.g. with h = 0.05, we obtain an unsatisfactory solution.
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In this problem, the convective term is clearly more relevant than the diffusive one (500
vs 1).
The convection is not symmetric, it has a precise direction (500 > 0 → from left

to right).
However, the FEM scheme does not see the direction: the first order derivative is
discretized giving in each node the same weight to Upwind and Downwind nodes.
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Convection

Downwind

Upwind

j

This is the reason of these oscillations, that can be reduced or even eliminated by
refining the mesh.
More precisely, if µ denotes the diffusion, b the convective field and the mesh size h is

such that h <
2µ

‖b‖
or equivalently the Péclet number is such that Pe :=

‖b‖h

2µ
< 1 the

numerical solution does not oscillate.

In the case of the previous simulation: Pe ≡
bh

2µ
=

500 × 0.05

2 × 1
= 12.5 > 1.

For the convection-diffusion of the oxygen in blood,
2µ

‖b‖
is of order 10−6, so a million of

nodes should be needed for a simulation over a unit interval !!!
⇒ Modifications of the pure Galerkin FE approach are in order for
eliminating oscillations without resorting to very small mesh sizes.
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The basic idea is to introduce a numerical viscosity which:

I vanishes when h → 0 so that the limit of the numerical problem still
remains the continuous original mathematical problem (consistency)

I increases the real Peclet number, so that oscillations are eliminated
(stabilization).

The numerical perturbation will introduce an over-diffusion, i.e. a loss of
accuracy. This is the price to pay to the numerical stability.

Different methods have been proposed, for the introduction of numerical
viscosity. We remind in 1D:

I Upwind

I Scharfetter-Gummel

The second approach is less perturbative, yielding stabilization with a smaller
numerical viscosity than the Upwind one.
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Upwind

Scharfetter-Gummel
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An elliptic problem in 2D

Consider the following problem:

−∆u = π
2 sin(πy) − 6(x − 1)H(x − 1) (5)

where H(x) is the Heaviside step function, such that:

H(x)







0 for x < 0;

1 for x > 0.

The computational domain is the Ω = (0, 2) × (0, 1) with Dirichlet boundary
conditions:

u = sin(πy) + (x − 1)3H(x − 1). (6)

It is possible to prove that u(x, y) ∈ H3(Ω).
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Error Analysis:

h = 0.2 h = 0.1 h = 0.05

P1 0.600956 0.301583 0.150929

P2 0.047083 0.0117509 0.00294124

Consider now the following modification:

−∆u = π
2 sin(πy) − 2H(x − 1) (7)

in the domain Ω = (0, 2) × (0, 1) with the exact solution:

u = sin(πy) + (x − 1)2H(x − 1). (8)
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It is possible to prove that u(x, y) ∈ H2(Ω).

Error Analysis:

h = 0.2 h = 0.1 h = 0.05

P1 0.57864 0.290369 0.145325

P2 0.0465805 0.0121859 0.00349274
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An advection dominated problem in 2D

Consider the 2D problem:

−∆u + b · ∇u = f (x, y) ∈ (0, 1)2

u = 0 on ∂Ω

(9)

with b = [5000, 5000]T and f = 0.
This is still an advection-dominated problem.
Also in 2D and 3D pure Galerkin solution are affected by oscillations if
Pe> 1.
Also in these cases, the “numerical therapy” is the introduction of a suitable
numerical viscosity.
Care must be taken for introducing viscosity only where needed, i.e. in the
wind direction, not in the Crosswind one.
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In particular, there is a class of methods (strongly consistent methods)
which stabilize the numerical solution with the introduction of perturbations
vanishing when the exact solution is forced into the numerical

problem.

This is possible by modifying the weak formulation of the problem:

a(uh, vh) = F(vh)

becomes (Generalized Galerkin problem):

a(uh, vh) + R(uh, f, vh) = F(vh)

where

R(uh, f, vh) =
∑

k∈Elements of the mesh

δk (f − (−∆uh + b · ∇uh) , Φ(vh)) .
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BASIC FACTS:

I Element by element the perturbing term depends on the residual of the
(strong) problem: ⇒ the perturbation vanishes if uh = uexact.

I δK is a suitable scaling parameter.

I Different choices for Φ(vh) give different strongly consistent methods.
For instance:

SUPG : Φ(vh) = b · ∇vh +
1

2
(∇ · b) vh

In the present problem (∇ · b = 0): Φ(vh) = b · ∇vh

GALS : Φ(vh) = −∆vh + b · ∇vh

I The previous expressions, involving the strong formulation of the
problem, make sense since the differential operators apply (element by
element) to polynomial functions.

⇒ These methods are by far more accurate than Upwind.

Dobbiaco - July 2005 – p. 26/29



Galerkin solution of a 2D advection-dominated problem.
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Upwind solution of the 2D advection-dominated problem.
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SUPG solution.
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