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Outline

I Introduction to the basic properties of the Finite Elements Method

I Basic reference: A. Quarteroni, A. Valli, Numerical Approximation of
Partial Differential Equations, Springer-Verlag, Heidelberg, 1996,
Chapters 3,5.
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Integral Formulation Of Boundary Value Problems

Consider the following boundary value problem:

−(αu′)′(x) + (βu′)(x) + (γu)(x) = f(x) 0 < x < 1, (1)

u(0) = u(1) = 0. (2)

where α, β and γ are continuous functions on [0, 1] with α(x) ≥ α0 > 0 for
any x ∈ [0, 1].

Multiply (1) by a function v ∈ C1([0, 1]), hereafter called a“test function”,
and integrate over the interval [0, 1]

1∫

0

αu′v′ dx +

1∫

0

βu′v dx +

1∫

0

γuv dx =

1∫

0

fv dx + [αu′v]10,

(note the integration by parts on the first integral.)
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Integral Formulation Of Boundary Value Problems

If we suppose v = 0 at x = 0 and x = 1:

1∫

0

αu′v′ dx +

1∫

0

βu′v dx +

1∫

0

γuv dx =

1∫

0

fv dx.

Denote by V the test function space.

V is given by all functions v that are continuous, vanish at x = 0 and x = 1 and
whose first derivative is piecewise continuous,
i.e., continuous everywhere except at a finite number of points in [0, 1] where
the left and right limits v′

− and v′
+ exist but do not necessarily coincide.

V is a vector space usually denoted by H1
0(0, 1):

H1
0(0, 1) =

{
v ∈ L2(0, 1) : v′ ∈ L2(0, 1), v(0) = v(1) = 0

}
(3)
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Integral Formulation Of Boundary Value Problems

A solution u ∈ C2([0, 1]) of (1), is also a solution of the following problem

find u ∈ V : a(u, v) = (f, v) for all v ∈ V, (4)

where (f, v) =

1∫

0

fv dx (scalar product of L2(0, 1)) and

a(u, v) =

1∫

0

αu′v′ dx +

1∫

0

βu′v dx +

1∫

0

γuv dx (5)

a(·, ·) is a bilinear form, linear with respect to both arguments.

➫ Problem (4) is called the weak formulation of problem (1).
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Integral Formulation Of Boundary Value Problems

➫ (4) contains only the first derivative of u: it might cover cases in which a
classical solution u ∈ C2([0, 1]) of (1) does not exist although the physical
problem is well defined:
e.g. α = 1, β = γ = 0:
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Non homogeneous boundary conditions
Equation (1) can be supplied with non homogeneous boundary
conditions: u(0) = u0, u(1) = u1.
A formulation like (4) is obtained by proceeding as follows.
ū(x) = xu1 + (1 − x)u0 is the straight line that interpolates the data at the endpoints

(usually called extension of the boundary data) and set
0
u= u(x) − ū(x).
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0
u∈ V satisfies the following problem

find
0
u∈ V : a(

0
u, v) = (f, v) − a(ū, v) for all v ∈ V.
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Non homogeneous boundary conditions

Different extensions of the boundary data can be considered as well.
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Different b.c. can be considered as well: e.g. Neumann boundary conditions,
u′(0) = u′(1) = 0.

➫ We still obtain a weak form (4), provided the space V is now

H1(0, 1).
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Formulation and Properties of the Galerkin Method

The Galerkin method is based on the weak formulation (4).
Vh denotes a finite dimensional vector subspace of V

I The Galerkin method reads

find uh ∈ Vh : a(uh, vh) = (f, vh) ∀vh ∈ Vh. (6)

This is a finite dimensional problem.
Let {ϕ1, . . . , ϕN} denote a set of N linearly independent functions of Vh:
a BASIS of Vh.

I We can write

uh(x) =

N∑

j=1

ujϕj(x).

The integer N denotes the dimension of the vector space Vh.
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Formulation and Properties of the Galerkin Method

Taking vh = ϕi as test functions, the Galerkin problem (6) is equivalent to
seeking N unknown coefficients {u1, . . . , uN} such that

N∑

j=1

uja(ϕj , ϕi) = (f, ϕi) ∀i = 1, . . . , N. (7)

Set AG = [aij ], with

aij = a(ϕj , ϕi)

the stiffness matrix, the unknown vector u = (u1, . . . , uN ) and the right-hand

side vector fG = (f1, . . . , fN ), with fi = (f, ϕi).

Problem (7) is equivalent to the linear system

AGu = fG. (8)

Dobbiaco - July 2005 – p. 10/43



Formulation and Properties of the Galerkin Method

The structure of AG, as well as the degree of accuracy of uh, depends on the
form of the basis functions {ϕi}, and therefore on the choice of Vh.

Two remarkable instances:

I the finite element method, where Vh is a space of piecewise polynomials
over subintervals of [0, 1] of length not greater than h which are
continuous and vanish at the endpoints x = 0 and 1

I the spectral method in which Vh is a space of algebraic polynomials
(typically featuring high degree) still vanishing at the endpoints x = 0, 1.
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The Finite Element Method

The finite element method (FEM) is a special technique for constructing a
subspace Vh based on the piecewise polynomial interpolation.

We introduce a partition Th of [0,1] into n subintervals Ij = [xj , xj+1], n ≥ 2, of
width hj = xj+1 − xj , j = 0, . . . , n − 1, with

0 = x0 < x1 < . . . < xn−1 < xn = 1

and let h = max
Th

(hj).

h
x x xx x0 1 i i+1 n

0 1
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The Finite Element Method

Consider for k ≥ 1 the family of piecewise polynomials Xk
h :

Xk
h =

{
v ∈ C0([0, 1]) : v|Ij ∈ Pk(Ij) ∀Ij ∈ Th

}
(9)

(Remember that functions in H1
0 in 1D are continuous)

I Functions vh ∈ Xk
h are continuous piecewise polynomials over [0, 1]

I Their restriction over each interval Ij ∈ Th is a polynomial of
degree ≤ k.

Now, we set

Vh = Xk,0
h =

{
vh ∈ Xk

h : vh(0) = vh(1) = 0
}

. (10)

The dimension N of the finite element space Vh is equal to nk − 1.

Dobbiaco - July 2005 – p. 13/43

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

x

y

 k=1

Dobbiaco - July 2005 – p. 14/43



0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

4

5

6
 k=2

x

y

Dobbiaco - July 2005 – p. 15/43

Accuracy of the Galerkin FEM

Since:

min
wh∈Vh

‖u − wh‖H1
0(0,1) ≤ ‖u − Πk

hu‖H1
0(0,1) (11)

where Πk
h
u is the interpolant of the exact solution u ∈ V , from the Céa Lemma, the

Galerkin approximation error ‖u − uh‖H1
0(0,1) can be estimated by the interpolation

error ‖u − Πk
h
u‖H1

0(0,1).

Theorem

Let u ∈ H1
0(0, 1) be the exact solution and uh ∈ Vh its finite element approximation

using continuous piecewise polynomials of degree k ≥ 1. Assume also that

u ∈ Hs(0, 1) for some s ≥ 2. Then the following error estimate holds

h−1|u − uh| + |D(u − uh)| ≤
M

α0
Chl|Dl+1u| (12)

where l = min(k, s − 1). M and α0 are respect. the continuity and coercivity
constants of the bilinear form a(·, ·). C is a positive constant independent of h. Here,

|w| :=

√∫

Ω
w2dx and Drw := drw/dxr .
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Consequences

Convergence The estimate (12) shows that the Galerkin method is
convergent, i.e. the approximation error tends to zero as h → 0 and the
order of convergence is k.

Regularity threshold There is no convenience to increase the degree k of the
finite element approximation if the solution u is not sufficiently
smooth.
l is called a regularity threshold.

To gain accuracy: reduce the stepsize h.
The following table summarizes the orders of convergence of the FEM for k = 1, . . . , 4

and s = 1, . . . , 5.

k s = 1 s = 2 s = 3 s = 4 s = 5

1 only convergence h1 h1 h1 h1

2 only convergence h1 h2 h2 h2

3 only convergence h1 h2 h3 h3

4 only convergence h1 h2 h3 h4
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The Finite Element Basis

How to generate a suitable basis {ϕj} for the finite element space Xk
h (k = 1

and k = 2) ?
The basic point is to choose appropriately a set of degrees of freedom for each
element Ij of the partition Th, i.e., the parameters which permit to uniquely

identify a function in Xk
h .

The generic function vh in Xk
h can therefore be written as

vh(x) =

nk∑

i=0

viϕi(x)

where {vi} denote the set of the degrees of freedom of vh

The basis functions ϕi (which are also called shape functions) satisfy the
Lagrange interpolation property:

ϕi(xj) =





0 for i 6= j,

1 for i = j.
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The space X
1
h - Continuous piecewise linear functions

The number of degrees of freedom for vh is equal to the number n + 1 of nodes in the
partition.
The most natural choice for ϕi, i = 1, . . . , n − 1, is

ϕi(x)





x − xi−1

xi − xi−1
for xi−1 ≤ x ≤ xi,

xi+1 − x

xi+1 − xi

for xi ≤ x ≤ xi+1,

0 elsewhere.

(13)

1

φ

φ
φ

x x x x xx ii−1 i+10 1

i

0

x  = 1nn−1

n

The support (i.e., the subset of [0, 1] where ϕi is non-vanishing) consists of the union of
the intervals Ii−1 and Ii if 1 ≤ i ≤ n − 1; it coincides with the interval I0 (respectively
In−1) if i = 0 (resp., i = n).
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For any interval Ii = [xi, xi+1], i = 0, . . . , n − 1, the two basis functions ϕi and
ϕi+1 can be regarded as the images of two “reference” shape functions
ϕ̂0 and ϕ̂1, defined over the reference interval [0, 1] through the linear affine
mapping φ : [0, 1] → Ii

x = φ(ξ) = xi + ξ(xi+1 − xi), i = 0, . . . , n − 1. (14)

Defining ϕ̂0(ξ) = 1 − ξ, ϕ̂1(ξ) = ξ we have ϕi(x) = ϕ̂0(ξ(x)) and ϕi+1(x) = ϕ̂1(ξ(x)),
where ξ(x) = (x − xi)/(xi+1 − xi)
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The space X
2
h - Piecewise polynomial of degree 2

Every function can be uniquely determined once three values of it at three

distinct points of Ii are assigned. To ensure continuity of vh over [0, 1] the degrees
of freedom are chosen as the function values at the nodes xi of Th, i = 0, . . . , n, and at
the midpoints of each interval Ii, i = 0, . . . , n − 1, for a total number equal to 2n + 1.
The shape functions for X2

h
on the reference interval [0, 1] are

φ̂0(ξ) = (1 − ξ)(1 − 2ξ), φ̂1(ξ) = 4(1 − ξ)ξ, φ̂2(ξ) = ξ(2ξ − 1)

φ
φ

φ

ξ0.5 10

1
0 2

The shape functions and are still the images of the reference functions through the affine
mapping (14).
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Solving the FEM linear system
The finite element basis functions of Xk

h
have a local support. Therefore

Afe is sparse

I k = 1: the support of the shape function ϕi is the union of the intervals Ii−1 and
Ii if 1 ≤ i ≤ n − 1 For a fixed i = 1, . . . , n − 1, only the shape functions ϕi−1

and ϕi+1 have a non-vanishing support intersection with that of ϕi

Afe is tridiagonal

I k = 2:
Afe is a pentadiagonal matrix

I k = 3:
Afe is an eptadiagonal matrix
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Solving the FEM linear system

In general, for multidimensional domains, the matrix is still sparse, but the
pattern does not necessarily have a specific structure.

It depends on the criteria adopted for numbering the degrees of
freedom

Dobbiaco - July 2005 – p. 23/43

Solving the FEM linear system

In real life applications Afe features large dimensions.

The efficiency of a finite element code is strictly related to the efficiency of
its linear solver.

Typically, numerical methods for the solution of linear system are subdivided
into two classes:

I Direct Methods

I Iterative Methods
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Direct Methods

Based on the factorization:

A = LU (15)

where L and U are lower and upper triangular matrices.
The solution resorts to the solution of the following two triangular systems:

Lu = b, Ux = y. (16)

This factorization is possible, e.g., for the matrix Afe in the case of elliptic
problems, thanks to the positivity of the matrix.
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Direct Methods

Main drawback of LU factorization in the context of FEM:
new non-zero elements generated by the factorization (➝ fill in).

⇒ High storage resources.
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Pattern of a finite element (3D) matrix (left) and of its L (middle) and U (right) factors.
The presence of the fill in is relevant: the original matrix features 12849 non null entries,
while each triangular factor has 899676 non null entries. 1799352 real numbers are
stored instead of 12849 when carrying out the factorization.
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Iterative Methods

Conjugate Gradient :
The conjugate gradient (CG) method applies to the s.p.d. case.

Setting r(0) = b − Ax(0) and p(0) = r(0), the k-th iteration of CG reads:

αk =
p(k)T

r(k)

p(k)T
Ap(k)

,→ x(k+1) = x(k) + αkp
(k)

r(k+1) = r(k) − αkAp(k)

βk =
(Ap(k))T r(k+1)

(Ap(k))T p(k)
,→ p(k+1) = r(k+1) − βkp

(k).

In this case, the convergence rate is driven by:

‖x(k) − xex‖
2
A ≤ 2

(√
K (A) − 1√
K (A) + 1

)2

k‖x(0) − xex‖
2
A (17)

⇒ The convergence rate is low when K (A) is large .
(e.g. K (A) = O(h−2) for FEM on second order problems.)
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Preconditioning

The original system can be modified:

P−1Ax = P−1b

P is a matrix called preconditioner to be suitably set up.
For a preconditioned conjugate gradient method convergence is driven by:

√
K (P−1A) − 1√
K (P−1A) + 1

A good preconditioner:

1. should reduce the condition number K
(
P−1A

)
; since the lowest (spectral)

condition number attainable is the one of the identity matrix and it is equal to 1, P

should identify a good“spectral” approximation of A;

2. ought be easy to solve; since at each step a system for the preconditioner P

must be solved, the preconditioned scheme is computationally feasible only if the
preconditioner can be solved with a (reasonably) low computational effort.

A good preconditioner is the compromise between these requirements.
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The Multi-Dimensional Case

The generalization of the elastic string problem is





−4u = f in Ω,

u = 0 on ∂Ω,
(18)

where 4u = ∂2u/∂x2 + ∂2u/∂y2 is the Laplace operator, and Ω is a 2D (or
a 3D) bounded domain whose boundary is ∂Ω.
More in general, we could refer to the problem:





−∇ · (µ∇u) + β · ∇u + σu = f in Ω,

u = 0 on ∂Ω,
(19)

µ, β, σ suitable functions of x1, x2 (and possibly x3)
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The Galerkin method still leads (formally) to the problem:

find uh ∈ V : a(uh, vh) = (f, vh) for all vh ∈ Vh,

Both the function space Vh and the bilinear form a(·, ·) have to be adapted to the

problem at hand.
Partition the domain Ω into K non-overlapping triangles (or tetrahedra
in 3D or elements in general) T providing a triangulation Th of the domain such
that

Ω =
⋃

T∈Th

T.

h is the maximum length of the edges of the triangles.
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The admissible triangulations are those for which any pair of non disjoint
triangles may have either a vertex or an edge in common: no ambiguity in the
definition of a point.

T

T2

1

2

T
T

2

1

T1
T2

T1 T

Admissible (top) and non-admissible (bottom) triangulations.
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Local basis functions:

Introduce on Th the set Z of the piecewise interpolation nodes
zi = (xi, yi)

T , for i = 1, . . . , N .
Let Pk(Ω), k ≥ 0, the the space of algebraic polynomials of degree ≤ k in the space
variables x, y:

Pk(Ω) = {p(x, y) =
k∑

i,j=0
i+j≤k

aijxiyj , x, y ∈ Ω}. (20)

For k ≥ 0, let P
c
k(Ω) be the space of piecewise polynomials of degree ≤ k, such

that, for any p ∈ P
c
k(Ω), p|T ∈ Pk(T ) for any T ∈ Th.

An elementary basis for P
c
k(Ω) consists of the Lagrange characteristic

polynomials li = li(x, y), such that li ∈ P
c
k(Ω) and

li(zj) = δij , i, j = 1, . . . , N, (21)

where δij = 0 if i 6= j and = 1 if i = j (Kronecker symbol).

Dobbiaco - July 2005 – p. 32/43



In the linear case:

P

l  (x,y)
1

i

i

If the interpolation nodes coincide with the vertices of the triangles, the
resulting piecewise linear functions will be continuous.

Local interpolation nodes on T̂ ; left, k = 1 (d1 = 3), right, k = 2 (d2 = 6).

This is not the only possible choice. The midpoints of the edges of the triangles could be
used as well, giving rise to a discontinuous piecewise polynomial over Ω.
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For k ≥ 0, the Lagrange piecewise interpolating polynomial of f ,
Πk

hf ∈ P
c
k(Ω), is then given by:

Πk
hf(x, y) =

N∑

i=1

f(zi)li(x, y). (22)

Finite Element Subspace Vh

The finite element method corresponds to taking

Vh =
{
vh ∈ C0(Ω) : vh|T ∈ Pk(T )∀T ∈ Th, vh|∂Ω

= 0
}

. (23)
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Bilinear form

As of the bilinear form a(·, ·), using the Green’s formula that generalizes the
formula of integration by parts

∫

Ω

−∇ · (µ∇u) v dxdy =

∫

Ω

µ∇u · ∇v dxdy −

∫

∂Ω

µ∇u · n v dγ, (24)

for any u, v smooth enough and where n is the outward normal unit vector on
∂Ω, we have:

a(uh, vh) =

∫

Ω

µ∇uh · ∇vh dxdy +

∫

Ω

β · ∇uhvh dxdy +

∫

Ω

σuhvh dxdy

The FE problem reads:

find uh ∈ Vh : a(uh, vh) = F(vh), ∀vh ∈ Vh. (25)
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Error Analysis

We still combine:
Céa Lemma + Interpolation Error Estimates:

Theorem
Let u ∈ H1

0(Ω) be the exact solution of (19) and uh ∈ Vh be its finite element
approximation using continuous piecewise polynomials of degree k ≥ 1.
Assume also that u ∈ Hs(Ω) for some s ≥ 2. Then the following error estimate
holds

h−1|u − uh| + |D(u − uh)| ≤
M

α0
Chl|Dl+1u| (26)

where l = min(k, s − 1). The constants M , α0 and C are as in (12), while Dl

denotes the set of all partial derivatives of order l.
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Remarks:

I The finite element solution uh can be written as:

uh(x, y) =

N∑

j=1

ujϕj(x, y).

The Galerkin finite element method leads to the solution of the linear
system Afeu = f , where [Afe]ij = a(ϕj , ϕi) and ui = ui.

I Afe is positive definite (and symmetric provided the bilinear form a (·, ·) is

symmetric).

I Its sparsity pattern depends on the topology of Th and the numbering
of its nodes.

I The spectral condition number of Afe is still O(h−2).
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Numerical Example: An elliptic problem in 2D

Consider the following problem:

−∆u = π2 sin(πy) − 6(x − 1)H(x − 1) (27)

where H(x) is the Heaviside step function, such that:

H(x)





0 for x < 0;

1 for x > 0.

The computational domain is the Ω = (0, 2) × (0, 1) with Dirichlet boundary
conditions:

u = sin(πy) + (x − 1)3H(x − 1). (28)

It is possible to prove that u(x, y) ∈ H3(Ω).
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A different grid will give a different matrix pattern:

Mon Jul 21 20:20:32 2003

0 1 2 3 4 5 6
00.10.20.30.40.5

0 1 2 3 4 5 6
00.10.20.30.40.5
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900

nz = 6477
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Error Analysis:

h = 0.2 h = 0.1 h = 0.05

P1 0.600956 0.301583 0.150929

P2 0.047083 0.0117509 0.00294124

Consider now the following modification:

−∆u = π2 sin(πy) − 2H(x − 1) (29)

in the domain Ω = (0, 2) × (0, 1) with the exact solution:

u = sin(πy) + (x − 1)2H(x − 1). (30)
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It is possible to prove that u(x, y) ∈ H2(Ω).

Error Analysis:

h = 0.2 h = 0.1 h = 0.05

P1 0.57864 0.290369 0.145325

P2 0.0465805 0.0121859 0.00349274
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