Krok 1: Uruchomić ANSYS Workbench i zapiać projekt jako 'Klucz_płaski_oczkowy.wbpj'.

Krok2: Przeciągnąć **Static Structural** z panelu **Analysis Systems Toolbox** i upuścić w podświetlonym zielonym prostokącie (tworzymy w ten sposób system do analizy strukturalnej statycznej).

Krok 3: Dodać nowy materiał: podwójne kliknięcie na **Engineering Data** (lub prawy przycisk i wybranie **Edit**). W tabelce '**Outline of Schematic A2: Engineering Data'** klikamy puste pole ('*click heare to add a new material*') i wpisujemy '**Stal nierdzewna**'. W panelu **Outline** podwójnie kliknąć na **Isotropic Elasticity** (być może trzeba będzie rozwinąć **Linear Elastic**). Wprowadzamy: Young's Modulus = 193E9, Poisson's Ratio = 0,27. Zwrócić uwagę na to jaka jest jednostka dla Young's Modulus (np. Pa, MPa). Można teraz zamknąć kartę 'A2:Engineering Data'.

1	Property	Value	Unit
2	Material Field Variables	III Table	
3	Isotropic Elasticity		
4	Derive from	Young's Modulus and Poisson's Ratio	
5	Young's Modulus		MPa
6	Poisson's Ratio		
7	Bulk Modulus		MPa
8	Shear Modulus		MPa

Krok 4: Prawy przycisk na komórkę *Geometry*, wybieramy *Properties* i ustawiamy: *Surface Body* – zaznaczone, *Analysis Type* = 2D. Ponownie podwójne kliknięcie na *Geometry* i wybieramy program *SpaceClaim*.

Krok 5: Z menu **File** programu *SpaceClaim* wybierz *Options* i w sekcji *Units* ustaw: *Lengths* = Millimiters, *Minor Grid Spacing* = 1 mm. Zatwierdź klikając Ok. Kliknij prawym przyciskiem gdziekolwiek w oknie *Graphics* i wybierz '*Select New Sketch Plane*'. Ustaw myszkę nad płaszczyzną x-y, aby zmienić domyślną płaszczyzny modelu x-z na x-y. Kliknij następnie *Plan View* (w menu głównym).

Krok 6: Utwórz geometrię z wymiarami (w milimetrach) jak na rysunku poniżej:

Po zakończeniu tworzenia obrysu geometrii kliknij ikonę *Pull* z zakładki *Design*. W ten sposób zostanie utworzony obiekt typu *Surface*. Kliknij *Surface* in *Structure Tree*

i wprowadź w **Properties**: Midsurface Thickness = 3 mm. Można wyjść z programu (z zapisywaniem lub nie – geometria i tak jest zapamiętana w projekcie w **Workbench**-u).

Krok 7: Uruchom teraz program *Static Structural*. W tym celu w *Workbench* podwójnie kliknij komórkę *Model*. Ustaw *Units* na *Metric* (mm, kg, N, s, mV, mA) w *Workbench*-u:

鼗 Unsaved Project - Workbench							
File View Tools	Units	optiSLang	Extensions	Jobs	Help		
💕 🖾 🖾 🎱 🚦	S	I (kg,m,s,K,A	,N,V)				
🗅 💕 📕 🕵 🦯	M	letric (kg,m,s,	,℃,A,N,V)				
Jimport	M	letric (tonne,r	mm,s,℃,mA,N,	.mV)			
Toolbox	U	.S.Customary	∕(lbm,in,s,⁰F,A	,lbf,V)			
	U	.S.Engineerin	g (lb,in,s,R,A,I	bf,V)			
Analysis Systems Coupled Field Harr	 M 	letric (kg,mm,	s,°C,mA,N,mV))			
Coupled Field Mod	~ D	isplay Values	as Defined		A		
🕞 Coupled Field Stati	D	isplay Values	in Project Units		Struc		
🕞 Coupled Field Tran					ering		
Eigenvalue Bucklin		nit Systems		_	try		

Kliknij *Geometry* w *Outline tree* (w programie *Static Structural*). W *Details of "Geometry"* wybierz dla *2D Behavior* = Plane Stress:

Ξ	Definition			
	Source	C:\Users\Krzysiek\AppData\Local\T		
	Туре	SpaceClaim		
	Length Unit	Meters		
	Element Control	Program Controlled		
4	2D Behavior	Plane Stress		
	Display Style	Body Color		

Rozwiń węzeł **Geometry** i kliknij Sys\Surface. W **Details** wybierz Material Assignment jako 'Stal nierdzewna'.

Kork 8: Generowanie siatki. Kliknij prawym przyciskiem myszy na węzeł **Mesh** i wybierz insert **Method**. Kliknij na powierzchnie modelu i z ustawień po lewej stronie kliknij na '*No Selection*', a nastepniej Apply. Kliknije prawym przyciskiem na węzeł **Mesh**, wybierz Insert **Sizing.** Ustaw: *Element Size* – 1,5 czyli 0,0015 m.

Krok 9: Ustawianie warunków brzegowych: *Fixed Support*, *Pressure* (*Magnitude* = 2E6). Fixed sepport definiujemy dla wszystkich boków oczka klucza. Nacisk (pressure) definiujemy dla górnej części szczeki klucza (por. rys. przy Kroku 6).

Krok 10: Uzyskanie rozwiązania.

Wstawić do węzła *Solution* (insert): *Total Deformation* oraz *Equivalent Stress (von Mises)* Następnie klikamy na węźle *Solution* i wybieramy *Solve*.